Li Yue, Zheming Li, Tingting Yin, and Chao Zhang (Tsinghua University)

Modern vehicles have many electronic control units (ECUs) connected to the Controller Area Network (CAN) bus, which have few security features in design and are vulnerable to cyber attacks. Researchers have proposed solutions like intrusion detection systems (IDS) to mitigate such threats. We presented a novel attack, CANCloak, which can deceive two ECUs with one CAN data frame, and therefore can bypass IDS detection or cause vehicle malfunction. In this attack, assuming a malicious transmitter is controlled by the adversary, one crafted CAN data frame can be transmitted to a target receiver, while other ECUs shall not receive that frame nor raise any error. We have setup a physical test environment and evaluated the effectiveness of this attack. Evaluation results showed that success rate of CANCloak reaches up to 99.7%, while the performance depends on the attack payload and sample point settings of victim receivers, independent from bus bit rate.

View More Papers

(Short) Object Removal Attacks on LiDAR-based 3D Object Detectors

Zhongyuan Hau, Kenneth Co, Soteris Demetriou, and Emil Lupu (Imperial College London) Best Short Paper Award Runner-up!

Read More

Detecting CAN Masquerade Attacks with Signal Clustering Similarity

Pablo Moriano (Oak Ridge National Laboratory), Robert A. Bridges (Oak Ridge National Laboratory) and Michael D. Iannacone (Oak Ridge National Laboratory)

Read More

Demo #6: Attacks on CAN Error Handling Mechanism

Khaled Serag (Purdue University), Vireshwar Kumar (IIT Delhi), Z. Berkay Celik (Purdue University), Rohit Bhatia (Purdue University), Mathias Payer (EPFL) and Dongyan Xu (Purdue University)

Read More