Fatemeh Khojasteh Dana, Saleh Khalaj Monfared, Shahin Tajik (Worcester Polytechnic Institute)

Satellites are highly vulnerable to adversarial glitches or high-energy radiation in space, which could cause faults on the onboard computer. Various radiation- and fault-tolerant methods, such as error correction codes (ECC) and redundancybased approaches, have been explored over the last decades to mitigate temporary soft errors on software and hardware. However, conventional ECC methods fail to deal with hard errors or permanent faults in the hardware components. This work introduces a detection- and response-based countermeasure to deal with partially damaged processor chips. It recovers the processor chip from permanent faults and enables continuous operation with available undamaged resources on the chip. We incorporate digitally-compatible delay-based sensors on the target processor’s chip to reliably detect the incoming radiation or glitching attempts on the physical fabric of the chip, even before a fault occurs. Upon detecting a fault in one or more components of the processor’s arithmetic logic unit (ALU), our countermeasure employs adaptive software recompilations to resynthesize and substitute the affected instructions with instructions of still functioning components to accomplish the task. Furthermore, if the fault is more widespread and prevents the correct operation of the entire processor, our approach deploys adaptive hardware partial reconfigurations to replace and reroute the failed components to undamaged locations of the chip. To validate our claims, we deploy a high-energy nearinfrared (NIR) laser beam on a RISC-V processor implemented on a 28 nm FPGA to emulate radiation and even hard errors by partially damaging the FPGA fabric. We demonstrate that our sensor can confidently detect the radiation and trigger the processor testing and fault recovery mechanisms. Finally, we discuss the overhead imposed by our countermeasure.

View More Papers

Repurposing Neural Networks for Efficient Cryptographic Computation

Xin Jin (The Ohio State University), Shiqing Ma (University of Massachusetts Amherst), Zhiqiang Lin (The Ohio State University)

Read More

Characterizing the Impact of Audio Deepfakes in the Presence...

Magdalena Pasternak (University of Florida), Kevin Warren (University of Florida), Daniel Olszewski (University of Florida), Susan Nittrouer (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Read More

The Skeleton Keys: A Large Scale Analysis of Credential...

Yizhe Shi (Fudan University), Zhemin Yang (Fudan University), Kangwei Zhong (Fudan University), Guangliang Yang (Fudan University), Yifan Yang (Fudan University), Xiaohan Zhang (Fudan University), Min Yang (Fudan University)

Read More

Diffence: Fencing Membership Privacy With Diffusion Models

Yuefeng Peng (University of Massachusetts Amherst), Ali Naseh (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Read More