Fatemeh Khojasteh Dana, Saleh Khalaj Monfared, Shahin Tajik (Worcester Polytechnic Institute)

Satellites are highly vulnerable to adversarial glitches or high-energy radiation in space, which could cause faults on the onboard computer. Various radiation- and fault-tolerant methods, such as error correction codes (ECC) and redundancybased approaches, have been explored over the last decades to mitigate temporary soft errors on software and hardware. However, conventional ECC methods fail to deal with hard errors or permanent faults in the hardware components. This work introduces a detection- and response-based countermeasure to deal with partially damaged processor chips. It recovers the processor chip from permanent faults and enables continuous operation with available undamaged resources on the chip. We incorporate digitally-compatible delay-based sensors on the target processor’s chip to reliably detect the incoming radiation or glitching attempts on the physical fabric of the chip, even before a fault occurs. Upon detecting a fault in one or more components of the processor’s arithmetic logic unit (ALU), our countermeasure employs adaptive software recompilations to resynthesize and substitute the affected instructions with instructions of still functioning components to accomplish the task. Furthermore, if the fault is more widespread and prevents the correct operation of the entire processor, our approach deploys adaptive hardware partial reconfigurations to replace and reroute the failed components to undamaged locations of the chip. To validate our claims, we deploy a high-energy nearinfrared (NIR) laser beam on a RISC-V processor implemented on a 28 nm FPGA to emulate radiation and even hard errors by partially damaging the FPGA fabric. We demonstrate that our sensor can confidently detect the radiation and trigger the processor testing and fault recovery mechanisms. Finally, we discuss the overhead imposed by our countermeasure.

View More Papers

UI-CTX: Understanding UI Behaviors with Code Contexts for Mobile...

Jiawei Li (Beihang University & National University of Singapore), Jiahao Liu (National University of Singapore), Jian Mao (Beihang University), Jun Zeng (National University of Singapore), Zhenkai Liang (National University of Singapore)

Read More

L-HAWK: A Controllable Physical Adversarial Patch Against a Long-Distance...

Taifeng Liu (Xidian University), Yang Liu (Xidian University), Zhuo Ma (Xidian University), Tong Yang (Peking University), Xinjing Liu (Xidian University), Teng Li (Xidian University), Jianfeng Ma (Xidian University)

Read More

Repurposing Neural Networks for Efficient Cryptographic Computation

Xin Jin (The Ohio State University), Shiqing Ma (University of Massachusetts Amherst), Zhiqiang Lin (The Ohio State University)

Read More

Be Careful of What You Embed: Demystifying OLE Vulnerabilities

Yunpeng Tian (Huazhong University of Science and Technology), Feng Dong (Huazhong University of Science and Technology), Haoyi Liu (Huazhong University of Science and Technology), Meng Xu (University of Waterloo), Zhiniang Peng (Huazhong University of Science and Technology; Sangfor Technologies Inc.), Zesen Ye (Sangfor Technologies Inc.), Shenghui Li (Huazhong University of Science and Technology), Xiapu Luo…

Read More