Fatemeh Khojasteh Dana, Saleh Khalaj Monfared, Shahin Tajik (Worcester Polytechnic Institute)

Satellites are highly vulnerable to adversarial glitches or high-energy radiation in space, which could cause faults on the onboard computer. Various radiation- and fault-tolerant methods, such as error correction codes (ECC) and redundancybased approaches, have been explored over the last decades to mitigate temporary soft errors on software and hardware. However, conventional ECC methods fail to deal with hard errors or permanent faults in the hardware components. This work introduces a detection- and response-based countermeasure to deal with partially damaged processor chips. It recovers the processor chip from permanent faults and enables continuous operation with available undamaged resources on the chip. We incorporate digitally-compatible delay-based sensors on the target processor’s chip to reliably detect the incoming radiation or glitching attempts on the physical fabric of the chip, even before a fault occurs. Upon detecting a fault in one or more components of the processor’s arithmetic logic unit (ALU), our countermeasure employs adaptive software recompilations to resynthesize and substitute the affected instructions with instructions of still functioning components to accomplish the task. Furthermore, if the fault is more widespread and prevents the correct operation of the entire processor, our approach deploys adaptive hardware partial reconfigurations to replace and reroute the failed components to undamaged locations of the chip. To validate our claims, we deploy a high-energy nearinfrared (NIR) laser beam on a RISC-V processor implemented on a 28 nm FPGA to emulate radiation and even hard errors by partially damaging the FPGA fabric. We demonstrate that our sensor can confidently detect the radiation and trigger the processor testing and fault recovery mechanisms. Finally, we discuss the overhead imposed by our countermeasure.

View More Papers

GhostShot: Manipulating the Image of CCD Cameras with Electromagnetic...

Yanze Ren (Zhejiang University), Qinhong Jiang (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

A Systematic Evaluation of Novel and Existing Cache Side...

Fabian Rauscher (Graz University of Technology), Carina Fiedler (Graz University of Technology), Andreas Kogler (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

Spatial-Domain Wireless Jamming with Reconfigurable Intelligent Surfaces

Philipp Mackensen (Ruhr University Bochum), Paul Staat (Max Planck Institute for Security and Privacy), Stefan Roth (Ruhr University Bochum), Aydin Sezgin (Ruhr University Bochum), Christof Paar (Max Planck Institute for Security and Privacy), Veelasha Moonsamy (Ruhr University Bochum)

Read More

Be Careful of What You Embed: Demystifying OLE Vulnerabilities

Yunpeng Tian (Huazhong University of Science and Technology), Feng Dong (Huazhong University of Science and Technology), Haoyi Liu (Huazhong University of Science and Technology), Meng Xu (University of Waterloo), Zhiniang Peng (Huazhong University of Science and Technology; Sangfor Technologies Inc.), Zesen Ye (Sangfor Technologies Inc.), Shenghui Li (Huazhong University of Science and Technology), Xiapu Luo…

Read More