Stephan Havermans (IMDEA Software Institute), Lars Baumgaertner, Jussi Roberts, Marcus Wallum (European Space Agency), Juan Caballero (IMDEA Software Institute)

Space systems are critical assets and protecting them against cyberattacks is a paramount challenge that has received limited attention. In particular, it is fundamental to secure spacecraft communications by identifying and removing potential vulnerabilities in the implementations of space (communication) protocols, which could be remotely exploited by attackers. This work reports our preliminary experiences when fuzzing five open-source implementations of four space protocols using two approaches: grammar-based fuzzing and coverageguided fuzzing. To enable the fuzzing, we created grammars for the protocols and custom harnesses for the targets. Our fuzzing identified 11 vulnerabilities across four targets caused by typical memory-related bugs such as double-frees, out-of-bounds reads, and the use of uninitialized variables. We responsibly disclosed the vulnerabilities. To date, 5 vulnerabilities have been patched and 4 have been awarded CVE identifiers. Additionally, we discovered a discrepancy in how one target interprets a protocol standard, which we reported and has since been fixed.

View More Papers

The State of https Adoption on the Web

Christoph Kerschbaumer (Mozilla Corporation), Frederik Braun (Mozilla Corporation), Simon Friedberger (Mozilla Corporation), Malte Jürgens (Mozilla Corporation)

Read More

Connecting the Dots in the Sky: Website Fingerprinting in...

Prabhjot Singh (University of Waterloo), Diogo Barradas (University of Waterloo), Tariq Elahi (University of Edinburgh), Noura Limam (University of Waterloo)

Read More

Repurposing Neural Networks for Efficient Cryptographic Computation

Xin Jin (The Ohio State University), Shiqing Ma (University of Massachusetts Amherst), Zhiqiang Lin (The Ohio State University)

Read More

User Comprehension and Comfort with Eye-Tracking and Hand-Tracking Permissions...

Kaiming Cheng (University of Washington), Mattea Sim (Indiana University), Tadayoshi Kohno (University of Washington), Franziska Roesner (University of Washington)

Read More