Harry Halpin (Nym Technologies)

With the ascendance of artificial intelligence (AI), one of the largest problems facing privacy-enhancing technologies (PETs) is how they can successfully counter-act the large-scale surveillance that is required for the collection of data–and metadata–necessary for the training of AI models. While there has been a flurry of research into the foundations of AI, the field of privacy-enhancing technologies still appears to be a grabbag of techniques without an overarching theoretical foundation. However, we will point to the potential unification of AI and PETS via the concepts of signal and noise, as formalized by informationtheoretic metrics like entropy. We overview the concept of entropy (“noise”) and its applications in both AI and PETs. For example, mixnets can be thought of as noise-generating networks, and so the inverse of neural networks. Then we defend the use of entropy as a metric to compare both different PETs, as well as both PETs and AI systems.

View More Papers

Manifoldchain: Maximizing Blockchain Throughput via Bandwidth-Clustered Sharding

Chunjiang Che (The Hong Kong University of Science and Technology (Guangzhou)), Songze Li (Southeast University), Xuechao Wang (The Hong Kong University of Science and Technology (Guangzhou))

Read More

How Different Tokenization Algorithms Impact LLMs and Transformer Models...

Ahmed Mostafa, Raisul Arefin Nahid, Samuel Mulder (Auburn University)

Read More

VeriBin: Adaptive Verification of Patches at the Binary Level

Hongwei Wu (Purdue University), Jianliang Wu (Simon Fraser University), Ruoyu Wu (Purdue University), Ayushi Sharma (Purdue University), Aravind Machiry (Purdue University), Antonio Bianchi (Purdue University)

Read More

What Makes Phishing Simulation Campaigns (Un)Acceptable? A Vignette Experiment

Jasmin Schwab (German Aerospace Center (DLR)), Alexander Nussbaum (University of the Bundeswehr Munich), Anastasia Sergeeva (University of Luxembourg), Florian Alt (University of the Bundeswehr Munich and Ludwig Maximilian University of Munich), and Verena Distler (Aalto University)

Read More