Jingwen Yan (Clemson University), Mohammed Aldeen (Clemson University), Jalil Harris (Clemson University), Kellen Grossenbacher (Clemson University), Aurore Munyaneza (Texas Tech University), Song Liao (Texas Tech University), Long Cheng (Clemson University)

As the number of mobile applications continues to grow, privacy labels (e.g. Apple’s Privacy Labels and Google’s Data Safety Section) emerge as a potential solution to help users understand how apps collect, use and share their data. However, it remains unclear whether these labels actually enhance user understanding to build trust in app developers or influence their download decisions. In this paper, we investigate user perceptions of privacy labels through a comprehensive analysis of online discussions and a structured user study. We first collect and analyze Reddit posts related to privacy labels, and manually analyze the discussions to understand users’ concerns and suggestions. Our analysis reveals that users are skeptical of self-reported privacy labels provided by developers and they struggle to interpret the terminology used in the labels. Users also expressed a desire for clearer explanations about why specific data is collected and emphasized the importance of third-party verification to ensure the accuracy of privacy labels. To complement our Reddit analysis, we conducted a user study with 50 participants recruited via Amazon Mechanical Turk and Qualtrics. The study revealed that 76% of the participants indicated that privacy labels influence their app download decisions and the amount of data practice in the privacy label is the most significant factor.

View More Papers

Secure Transformer Inference Made Non-interactive

Jiawen Zhang (Zhejiang University), Xinpeng Yang (Zhejiang University), Lipeng He (University of Waterloo), Kejia Chen (Zhejiang University), Wen-jie Lu (Zhejiang University), Yinghao Wang (Zhejiang University), Xiaoyang Hou (Zhejiang University), Jian Liu (Zhejiang University), Kui Ren (Zhejiang University), Xiaohu Yang (Zhejiang University)

Read More

A Method to Facilitate Membership Inference Attacks in Deep...

Zitao Chen (University of British Columbia), Karthik Pattabiraman (University of British Columbia)

Read More

Cross-Origin Web Attacks via HTTP/2 Server Push and Signed...

Pinji Chen (Tsinghua University), Jianjun Chen (Tsinghua University & Zhongguancun Laboratory), Mingming Zhang (Zhongguancun Laboratory), Qi Wang (Tsinghua University), Yiming Zhang (Tsinghua University), Mingwei Xu (Tsinghua University), Haixin Duan (Tsinghua University)

Read More

SecuWear: Secure Data Sharing Between Wearable Devices

Sujin Han (KAIST) Diana A. Vasile (Nokia Bell Labs), Fahim Kawsar (Nokia Bell Labs, University of Glasgow), Chulhong Min (Nokia Bell Labs)

Read More