Ran Elgedawy (The University of Tennessee, Knoxville), John Sadik (The University of Tennessee, Knoxville), Anuj Gautam (The University of Tennessee, Knoxville), Trinity Bissahoyo (The University of Tennessee, Knoxville), Christopher Childress (The University of Tennessee, Knoxville), Jacob Leonard (The University of Tennessee, Knoxville), Clay Shubert (The University of Tennessee, Knoxville), Scott Ruoti (The University of Tennessee, Knoxville)

In this the digital age, parents and children may turn to online security advice to determine how to proceed. In this paper, we examine the advice available to parents and children regarding content filtering and circumvention as found on YouTube and TikTok. In an analysis of 839 videos returned from queries on these topics, we found that half (n=399) provide relevant advice to the target demographic. Our results show that of these videos, roughly three-quarters are accurate, with the remaining one-fourth containing incorrect advice. We find that videos targeting children are both more likely to be incorrect and actionable than videos targeting parents, leaving children at increased risk of taking harmful action. Moreover, we find that while advice videos targeting parents will occasionally discuss the ethics of content filtering and device monitoring (including recommendations to respect children’s autonomy) no such discussion of the ethics or risks of circumventing content filtering is given to children, leaving them unaware of any risks that may be involved with doing so. Our findings suggest that video-based social media has the potential to be an effective medium for propagating security advice and that the public would benefit from security researchers and practitioners engaging more with these platforms, both for the creation of content and of tools designed to help with more effective filtering.

View More Papers

SKILLPoV: Towards Accessible and Effective Privacy Notice for Amazon...

Jingwen Yan (Clemson University), Song Liao (Texas Tech University), Mohammed Aldeen (Clemson University), Luyi Xing (Indiana University Bloomington), Danfeng (Daphne) Yao (Virginia Tech), Long Cheng (Clemson University)

Read More

Inspecting Compiler Optimizations on Mixed Boolean Arithmetic Obfuscation

Rachael Little, Dongpeng Xu (University of New Hampshire)

Read More

DLBox: New Model Training Framework for Protecting Training Data

Jaewon Hur (Seoul National University), Juheon Yi (Nokia Bell Labs, Cambridge, UK), Cheolwoo Myung (Seoul National University), Sangyun Kim (Seoul National University), Youngki Lee (Seoul National University), Byoungyoung Lee (Seoul National University)

Read More

ICSQuartz: Scan Cycle-Aware and Vendor-Agnostic Fuzzing for Industrial Control...

Corban Villa (New York University Abu Dhabi), Constantine Doumanidis (New York University Abu Dhabi), Hithem Lamri (New York University Abu Dhabi), Prashant Hari Narayan Rajput (InterSystems), Michail Maniatakos (New York University Abu Dhabi)

Read More