Ran Elgedawy (The University of Tennessee, Knoxville), John Sadik (The University of Tennessee, Knoxville), Anuj Gautam (The University of Tennessee, Knoxville), Trinity Bissahoyo (The University of Tennessee, Knoxville), Christopher Childress (The University of Tennessee, Knoxville), Jacob Leonard (The University of Tennessee, Knoxville), Clay Shubert (The University of Tennessee, Knoxville), Scott Ruoti (The University of Tennessee, Knoxville)

In this the digital age, parents and children may turn to online security advice to determine how to proceed. In this paper, we examine the advice available to parents and children regarding content filtering and circumvention as found on YouTube and TikTok. In an analysis of 839 videos returned from queries on these topics, we found that half (n=399) provide relevant advice to the target demographic. Our results show that of these videos, roughly three-quarters are accurate, with the remaining one-fourth containing incorrect advice. We find that videos targeting children are both more likely to be incorrect and actionable than videos targeting parents, leaving children at increased risk of taking harmful action. Moreover, we find that while advice videos targeting parents will occasionally discuss the ethics of content filtering and device monitoring (including recommendations to respect children’s autonomy) no such discussion of the ethics or risks of circumventing content filtering is given to children, leaving them unaware of any risks that may be involved with doing so. Our findings suggest that video-based social media has the potential to be an effective medium for propagating security advice and that the public would benefit from security researchers and practitioners engaging more with these platforms, both for the creation of content and of tools designed to help with more effective filtering.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 118 [1] => 32 ) ) ) [post__not_in] => Array ( [0] => 20971 ) )

Evaluating Personal Data Control In Mobile Applications Using Heuristics

Alain Giboin (UCA, INRIA, CNRS, I3S), Karima Boudaoud (UCA, CNRS, I3S), Patrice Pena (Userthink), Yoann Bertrand (UCA, CNRS, I3S), Fabien Gandon (UCA, INRIA, CNRS, I3S)

Read More

Heimdall: Towards Risk-Aware Network Management Outsourcing

Yuejie Wang (Peking University), Qiutong Men (New York University), Yongting Chen (New York University Shanghai), Jiajin Liu (New York University Shanghai), Gengyu Chen (Carnegie Mellon University), Ying Zhang (Meta), Guyue Liu (Peking University), Vyas Sekar (Carnegie Mellon University)

Read More

UsersFirst in Practice: Evaluating a User-Centric Threat Modeling Taxonomy...

Alexandra Xinran Li (Carnegie Mellon University), Tian Wang (University of Illinois Urbana-Champaign), Yu-Ju Yang (University of Illinois Urbana-Champaign), Miguel Rivera-Lanas (Carnegie Mellon University), Debeshi Ghosh (Carnegie Mellon University), Hana Habib (Carnegie Mellon University), Lorrie Cranor (Carnegie Mellon University), Norman Sadeh (Carnegie Mellon University)

Read More

Cybercrime Investigators are Users Too! Understanding the Socio-Technical Challenges...

Mariam Nouh (University of Oxford); Jason R. C. Nurse (University of Kent); Helena Webb, Michael Goldsmith (University of Oxford)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)