Andrew Searles (University of California Irvine), Renascence Tarafder Prapty (University of California Irvine), Gene Tsudik (University of California Irvine)

Since 2003, CAPTCHAS have been widely used as a barrier against bots, while simultaneously annoying great multitudes of users worldwide. As the use of CAPTCHAS grew, techniques to defeat or bypass them kept improving. In response, CAPTCHAS themselves evolved in terms of sophistication and diversity, becoming increasingly difficult to solve for both bots and humans. Given this long-standing and still-ongoing arms race, it is important to investigate usability, solving performance, and user perceptions of modern CAPTCHAS. In this work, we do so via a large scale (over 3,600 distinct users) 13-month realworld user study and post-study survey. The study, conducted at a large public university, is based on a live account creation and password recovery service with currently prevalent CAPTCHA type: reCAPTCHAv2.

Results show that, with more attempts, users improve in solving checkbox CAPTCHAS. For website developers and user study designers, results indicate that the website context, i.e., whether the service is password recovery or account creation, directly influences (with statistically significant differences) CAPTCHA solving times. We consider the impact of participants’ major and education level, showing that certain majors exhibit better performance, while, in general, education level has a direct impact on solving time. Unsurprisingly, we discover that participants find image CAPTCHAS to be annoying, while checkbox CAPTCHAS are perceived as easy. We also show that, rated via System Usability Scale (SUS), image CAPTCHAS are viewed as “OK”, while checkbox CAPTCHAS are viewed as “good”.

Finally, we also explore the cost and security of reCAPTCHAv2 and conclude that it comes at an immense cost and offers practically no security. Overall, we believe that this study’s results prompt a natural conclusion: reCAPTCHAv2 and similar reCAPTCHA technology should be deprecated.

View More Papers

Beyond Classification: Inferring Function Names in Stripped Binaries via...

Linxi Jiang (The Ohio State University), Xin Jin (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

Trust and Privacy Expectations during Perilous Times of Contact...

Habiba Farzand (University of Glasgow), Florian Mathis (University of Glasgow), Karola Marky (University of Glasgow), Mohamed Khamis (University of Glasgow)

Read More

The Walls Have Ears: Gauging Security Awareness in a...

Gokul Jayakrishnan, Vijayanand Banahatti, Sachin Lodha (TCS Research Tata Consultancy Services Ltd.)

Read More

Securing BGP ASAP: ASPA and other Post-ROV Defenses

Justin Furuness (University of Connecticut), Cameron Morris (University of Connecticut), Reynaldo Morillo (University of Connecticut), Arvind Kasiliya (University of Connecticut), Bing Wang (University of Connecticut), Amir Herzberg (University of Connecticut)

Read More