Lea Duesterwald (Carnegie Mellon University), Ian Yang (Carnegie Mellon University), Norman Sadeh (Carnegie Mellon University)

Human actions or lack thereof contribute to a large majority of cybersecurity incidents. Traditionally, when looking for advice on cybersecurity questions, people have turned to search engines or social sites like Reddit. The rapid adoption of chatbot technologies is offering a potentially more direct way of getting similar advice. Initial research suggests, however, that while chatbot answers to common cybersecurity questions tend to be fairly accurate, they may not be very effective as they often fall short on other desired qualities such as understandability, actionability, or motivational power. Research in this area thus far has been limited to the evaluation by researchers themselves on a small number of synthetic questions. This article reports on what we believe to be the first in situ evaluation of a cybersecurity Question Answering (QA) assistant. We also evaluate a prompt engineered to help the cybersecurity QA assistant generate more effective answers. The study involved a 10-day deployment of a cybersecurity QA assistant in the form of a Chrome extension. Collectively, participants (N=51) evaluated answers generated by the assistant to over 1,000 cybersecurity questions they submitted as part of their regular day-to-day activities. The results suggest that a majority of participants found the assistant useful and often took actions based on the answers they received. In particular, the study indicates that prompting successfully improved the effectiveness of answers and, in particular, the likelihood that users follow their recommendations (fraction of participants who actually followed the advice was 0.514 with prompting vs. 0.402 without prompting, p=4.61E-04), an impact on people’s actual behavior. We provide a detailed analysis of data collected in this study, discuss their implications, and outline next steps in the development and deployment of effective cybersecurity QA assistants that offer the promise of changing actual user behavior and of reducing human-related security incidents.

View More Papers

BARBIE: Robust Backdoor Detection Based on Latent Separability

Hanlei Zhang (Zhejiang University), Yijie Bai (Zhejiang University), Yanjiao Chen (Zhejiang University), Zhongming Ma (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

Work-in-Progress: Uncovering Dark Patterns: A Longitudinal Study of Cookie...

Zihan Qu (Johns Hopkins University), Xinyi Qu (University College London), Xin Shen, Zhen Liang, and Jianjia Yu (Johns Hopkins University)

Read More

JBomAudit: Assessing the Landscape, Compliance, and Security Implications of...

Yue Xiao (IBM Research), Dhilung Kirat (IBM Research), Douglas Lee Schales (IBM Research), Jiyong Jang (IBM Research), Luyi Xing (Indiana University Bloomington), Xiaojing Liao (Indiana University)

Read More

Security Advice on Content Filtering and Circumvention for Parents...

Ran Elgedawy (The University of Tennessee, Knoxville), John Sadik (The University of Tennessee, Knoxville), Anuj Gautam (The University of Tennessee, Knoxville), Trinity Bissahoyo (The University of Tennessee, Knoxville), Christopher Childress (The University of Tennessee, Knoxville), Jacob Leonard (The University of Tennessee, Knoxville), Clay Shubert (The University of Tennessee, Knoxville), Scott Ruoti (The University of Tennessee,…

Read More