Jacob Hopkins (Texas A&M University - Corpus Christi), Carlos Rubio-Medrano (Texas A&M University - Corpus Christi), Cori Faklaris (University of North Carolina at Charlotte)

Data is a critical resource for technologies such as Large Language Models (LLMs) that are driving significant economic gains. Due to its importance, many different organizations are collecting and analyzing as much data as possible to secure their growth and relevance, leading to non-trivial privacy risks. Among the areas with potential for increased privacy risks are voluntary data-sharing events, when individuals willingly exchange their personal data for some service or item. This often places them in positions where they have inadequate control over what data should be exchanged and how it should be used. To address this power imbalance, we aim to obtain, analyze, and dissect the many different behaviors and needs of both parties involved in such negotiations, namely, the data subjects, i.e., the individuals whose data is being exchanged, and the data requesters, i.e., those who want to acquire the data. As an initial step, we are developing a multi-stage user study to better understand the factors that govern the behavior of both data subjects and requesters while interacting in data exchange negotiations. In addition, we aim to identify the design elements that both parties require so that future privacy-enhancing technologies (PETs) prioritizing privacy negotiation algorithms can be further developed and deployed in practice.

View More Papers

Cybercrime Investigators are Users Too! Understanding the Socio-Technical Challenges...

Mariam Nouh (University of Oxford); Jason R. C. Nurse (University of Kent); Helena Webb, Michael Goldsmith (University of Oxford)

Read More

The Discriminative Power of Cross-layer RTTs in Fingerprinting Proxy...

Diwen Xue (University of Michigan), Robert Stanley (University of Michigan), Piyush Kumar (University of Michigan), Roya Ensafi (University of Michigan)

Read More

Revisiting Physical-World Adversarial Attack on Traffic Sign Recognition: A...

Ningfei Wang (University of California, Irvine), Shaoyuan Xie (University of California, Irvine), Takami Sato (University of California, Irvine), Yunpeng Luo (University of California, Irvine), Kaidi Xu (Drexel University), Qi Alfred Chen (University of California, Irvine)

Read More

DShield: Defending against Backdoor Attacks on Graph Neural Networks...

Hao Yu (National University of Defense Technology), Chuan Ma (Chongqing University), Xinhang Wan (National University of Defense Technology), Jun Wang (National University of Defense Technology), Tao Xiang (Chongqing University), Meng Shen (Beijing Institute of Technology, Beijing, China), Xinwang Liu (National University of Defense Technology)

Read More