Kaiming Cheng (University of Washington), Mattea Sim (Indiana University), Tadayoshi Kohno (University of Washington), Franziska Roesner (University of Washington)

Augmented reality (AR) headsets are now commercially available, including major platforms like Microsoft’s Hololens 2, Meta’s Quest Pro, and Apple’s Vision Pro. Compared to currently widely deployed smartphone or web platforms, emerging AR headsets introduce new sensors that capture substantial and potentially privacy-invasive data about the users, including eye-tracking and hand-tracking sensors. As millions of users begin to explore AR for the very first time with the release of these headsets, it is crucial to understand the current technical landscape of these new sensing technologies and how end-users perceive and understand their associated privacy and utility implications. In this work, we investigate the current eye-tracking and hand-tracking permission models for three major platforms (HoloLens 2, Quest Pro, and Vision Pro): what is the granularity of eye-tracking and hand-tracking data made available to applications on these platforms, and what information is provided to users asked to grant these permissions (if at all)? We conducted a survey with 280 participants with no prior AR experience on Prolific to investigate (1) people’s comfort with the idea of granting eye- and hand-tracking permissions on these platforms, (2) their perceived and actual comprehension of the privacy and utility implications of granting these permissions, and (3) the self-reported factors that impact their willingness to try eye-tracking and hand-tracking enabled AR technologies in the future. Based on (mis)alignments we identify between comfort, perceived and actual comprehension, and decision factors, we discuss how future AR platforms can better communicate existing privacy protections, improve privacy-preserving designs, or better communicate risks.

View More Papers

DUMPLING: Fine-grained Differential JavaScript Engine Fuzzing

Liam Wachter (EPFL), Julian Gremminger (EPFL), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Mathias Payer (EPFL), Flavio Toffalini (EPFL)

Read More

LightAntenna: Characterizing the Limits of Fluorescent Lamp-Induced Electromagnetic Interference

Fengchen Yang (Zhejiang University), Wenze Cui (Zhejiang University), Xinfeng Li (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

TME-Box: Scalable In-Process Isolation through Intel TME-MK Memory Encryption

Martin Unterguggenberger (Graz University of Technology), Lukas Lamster (Graz University of Technology), David Schrammel (Graz University of Technology), Martin Schwarzl (Cloudflare, Inc.), Stefan Mangard (Graz University of Technology)

Read More

Poster: FORESIGHT, A Unified Framework for Threat Modeling and...

ChaeYoung Kim (Seoul Women's University), Kyounggon Kim (Naif Arab University for Security Sciences)

Read More