Kaiming Cheng (University of Washington), Mattea Sim (Indiana University), Tadayoshi Kohno (University of Washington), Franziska Roesner (University of Washington)

Augmented reality (AR) headsets are now commercially available, including major platforms like Microsoft’s Hololens 2, Meta’s Quest Pro, and Apple’s Vision Pro. Compared to currently widely deployed smartphone or web platforms, emerging AR headsets introduce new sensors that capture substantial and potentially privacy-invasive data about the users, including eye-tracking and hand-tracking sensors. As millions of users begin to explore AR for the very first time with the release of these headsets, it is crucial to understand the current technical landscape of these new sensing technologies and how end-users perceive and understand their associated privacy and utility implications. In this work, we investigate the current eye-tracking and hand-tracking permission models for three major platforms (HoloLens 2, Quest Pro, and Vision Pro): what is the granularity of eye-tracking and hand-tracking data made available to applications on these platforms, and what information is provided to users asked to grant these permissions (if at all)? We conducted a survey with 280 participants with no prior AR experience on Prolific to investigate (1) people’s comfort with the idea of granting eye- and hand-tracking permissions on these platforms, (2) their perceived and actual comprehension of the privacy and utility implications of granting these permissions, and (3) the self-reported factors that impact their willingness to try eye-tracking and hand-tracking enabled AR technologies in the future. Based on (mis)alignments we identify between comfort, perceived and actual comprehension, and decision factors, we discuss how future AR platforms can better communicate existing privacy protections, improve privacy-preserving designs, or better communicate risks.

View More Papers

MOBIDOJO: A Virtual Security Combat Platform for 5G Cellular...

Hyunwoo Lee (Ohio State University), Haohuang Wen (Ohio State University), Phillip Porras (SRI), Vinod Yegneswaran (SRI), Ashish Gehani (SRI), Prakhar Sharma (SRI), Zhiqiang Lin (Ohio State University)

Read More

Vision: Towards Fully Shoulder-Surfing Resistant and Usable Authentication for...

Tobias Länge (Karlsruhe Institute of Technology), Philipp Matheis (Karlsruhe Institute of Technology), Reyhan Düzgün (Ruhr University Bochum), Melanie Volkamer (Karlsruhe Institute of Technology), Peter Mayer (Karlsruhe Institute of Technology, University of Southern Denmark)

Read More

Detecting Ransomware Despite I/O Overhead: A Practical Multi-Staged Approach

Christian van Sloun (RWTH Aachen University), Vincent Woeste (RWTH Aachen University), Konrad Wolsing (RWTH Aachen University & Fraunhofer FKIE), Jan Pennekamp (RWTH Aachen University), Klaus Wehrle (RWTH Aachen University)

Read More

A Key-Driven Framework for Identity-Preserving Face Anonymization

Miaomiao Wang (Shanghai University), Guang Hua (Singapore Institute of Technology), Sheng Li (Fudan University), Guorui Feng (Shanghai University)

Read More