Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Web browsers have become complex tools used by billions of people. The complexity is in large part due to its adaptability and variability as a deployment platform for modern applications, with features continuously being added. This also has the side effect of exposing configuration and hardware properties that are exploited by browser fingerprinting techniques.

In this paper, we generate a large dataset of browser fingerprints using multiple browser versions, system and hardware configurations, and describe a tool that allows reasoning over the links between configuration parameters and browser fingerprints. We argue that using generated datasets that exhaustively explore configurations provides developers, and attackers, with important information related to the links between configuration parameters (i.e., browser, system and hardware configurations) and their exhibited browser fingerprints. We also exploit Browser Object Model (BOM) enumeration to obtain exhaustive browser fingerprints composed of up to 16, 000 attributes.

We propose to represent browser fingerprints and their configurations with feature models, a tree-based representation commonly used in Software Product Line Engineering (SPLE) to respond to the challenges of variability, to provide a better abstraction to represent browser fingerprints and configurations. With translate 89, 486 browser fingerprints into a feature model with 35, 857 nodes from 1, 748 configurations. We show the advantages of this approach, a more elegant tree-based solution, and propose an API to query the dataset. With these tools and our exhaustive configuration exploration, we provide multiple use cases, including differences between headless and headful browsers or the selection of a minimal set of attributes from browser fingerprints to re-identify a configuration parameter from the browser.

View More Papers

KernelSnitch: Side Channel-Attacks on Kernel Data Structures

Lukas Maar (Graz University of Technology), Jonas Juffinger (Graz University of Technology), Thomas Steinbauer (Graz University of Technology), Daniel Gruss (Graz University of Technology), Stefan Mangard (Graz University of Technology)

Read More

Tweezers: A Framework for Security Event Detection via Event...

Jian Cui (Indiana University), Hanna Kim (KAIST), Eugene Jang (S2W Inc.), Dayeon Yim (S2W Inc.), Kicheol Kim (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST), Xiaojing Liao (Indiana University)

Read More

DeFiIntel: A Dataset Bridging On-Chain and Off-Chain Data for...

Iori Suzuki (Graduate School of Environment and Information Sciences, Yokohama National University), Yin Minn Pa Pa (Institute of Advanced Sciences, Yokohama National University), Nguyen Thi Van Anh (Institute of Advanced Sciences, Yokohama National University), Katsunari Yoshioka (Graduate School of Environment and Information Sciences, Yokohama National University)

Read More