Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Web browsers have become complex tools used by billions of people. The complexity is in large part due to its adaptability and variability as a deployment platform for modern applications, with features continuously being added. This also has the side effect of exposing configuration and hardware properties that are exploited by browser fingerprinting techniques.

In this paper, we generate a large dataset of browser fingerprints using multiple browser versions, system and hardware configurations, and describe a tool that allows reasoning over the links between configuration parameters and browser fingerprints. We argue that using generated datasets that exhaustively explore configurations provides developers, and attackers, with important information related to the links between configuration parameters (i.e., browser, system and hardware configurations) and their exhibited browser fingerprints. We also exploit Browser Object Model (BOM) enumeration to obtain exhaustive browser fingerprints composed of up to 16, 000 attributes.

We propose to represent browser fingerprints and their configurations with feature models, a tree-based representation commonly used in Software Product Line Engineering (SPLE) to respond to the challenges of variability, to provide a better abstraction to represent browser fingerprints and configurations. With translate 89, 486 browser fingerprints into a feature model with 35, 857 nodes from 1, 748 configurations. We show the advantages of this approach, a more elegant tree-based solution, and propose an API to query the dataset. With these tools and our exhaustive configuration exploration, we provide multiple use cases, including differences between headless and headful browsers or the selection of a minimal set of attributes from browser fingerprints to re-identify a configuration parameter from the browser.

View More Papers

DeFiIntel: A Dataset Bridging On-Chain and Off-Chain Data for...

Iori Suzuki (Graduate School of Environment and Information Sciences, Yokohama National University), Yin Minn Pa Pa (Institute of Advanced Sciences, Yokohama National University), Nguyen Thi Van Anh (Institute of Advanced Sciences, Yokohama National University), Katsunari Yoshioka (Graduate School of Environment and Information Sciences, Yokohama National University)

Read More

TME-Box: Scalable In-Process Isolation through Intel TME-MK Memory Encryption

Martin Unterguggenberger (Graz University of Technology), Lukas Lamster (Graz University of Technology), David Schrammel (Graz University of Technology), Martin Schwarzl (Cloudflare, Inc.), Stefan Mangard (Graz University of Technology)

Read More

Detecting Ransomware Despite I/O Overhead: A Practical Multi-Staged Approach

Christian van Sloun (RWTH Aachen University), Vincent Woeste (RWTH Aachen University), Konrad Wolsing (RWTH Aachen University & Fraunhofer FKIE), Jan Pennekamp (RWTH Aachen University), Klaus Wehrle (RWTH Aachen University)

Read More