Tomer Schwartz (Data and Security Laboratory Fujitsu Research of Europe Ltd), Ofir Manor (Data and Security Laboratory Fujitsu Research of Europe Ltd), Andikan Otung (Data and Security Laboratory Fujitsu Research of Europe Ltd)

Cyber attacks and fraud pose significant risks to online platforms, with malicious actors who often employ VPN servers to conceal their identities and bypass geolocation-based security measures. Current passive VPN detection methods identify VPN connections with more than 95% accuracy, but depend on prior knowledge, such as known VPN to IP mappings and predefined communication patterns. This makes them ineffective against sophisticated attackers who leverage compromised machines as VPN servers. On the other hand, current active detection methods are effective in detecting proxy usage but are mostly ineffective in VPN detection.

This paper introduces SNITCH (Server-side Non-intrusive Identification of Tunneled CHaracteristics), a novel approach designed to enhance web security by identifying VPN use without prior data collection on known VPN servers or utilizing intrusive client-side software. SNITCH combines IP geolocation, ground-truth landmarks, and communication delay measurements to detect VPN activity in real time and seamlessly integrates into the authentication process, preserving user experience while enhancing security. We measured 130 thousand connections from over 24 thousand globally distributed VPN servers and client nodes to validate the feasibility of our solution in the real world. Our experiments revealed that in scenarios where the State of the Art fails to detect, SNITCH achieves a detection accuracy of up to 93%, depending on the geographical region.

View More Papers

Heimdall: Towards Risk-Aware Network Management Outsourcing

Yuejie Wang (Peking University), Qiutong Men (New York University), Yongting Chen (New York University Shanghai), Jiajin Liu (New York University Shanghai), Gengyu Chen (Carnegie Mellon University), Ying Zhang (Meta), Guyue Liu (Peking University), Vyas Sekar (Carnegie Mellon University)

Read More

RAIFLE: Reconstruction Attacks on Interaction-based Federated Learning with Adversarial...

Dzung Pham (University of Massachusetts Amherst), Shreyas Kulkarni (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Read More

WAVEN: WebAssembly Memory Virtualization for Enclaves

Weili Wang (Southern University of Science and Technology), Honghan Ji (ByteDance Inc.), Peixuan He (ByteDance Inc.), Yao Zhang (ByteDance Inc.), Ye Wu (ByteDance Inc.), Yinqian Zhang (Southern University of Science and Technology)

Read More

Revisiting Physical-World Adversarial Attack on Traffic Sign Recognition: A...

Ningfei Wang (University of California, Irvine), Shaoyuan Xie (University of California, Irvine), Takami Sato (University of California, Irvine), Yunpeng Luo (University of California, Irvine), Kaidi Xu (Drexel University), Qi Alfred Chen (University of California, Irvine)

Read More