Chi-en Amy Tai (University of Waterloo), Urs Hengartner (University of Waterloo), Alexander Wong (University of Waterloo)

Passwords are a ubiquitous form of authentication that is still present for many online services and platforms. Researchers have measured password creation policies for a multitude of websites and studied password creation behaviour for users who speak various languages. Evidence shows that limiting all users to alphanumeric characters and select special characters resulted in weaker passwords for certain demographics. However, password creation policies still concentrate on only alphanumeric characters and focus on increasing the length of passwords rather than the diversity of potential characters in the password. With the recent recommendation towards passphrases, further concerns arise pertaining to the potential consequences of not being inclusive in password creation. Previous work studying multilingual passphrase policies that combined English and African languages showed that multilingual passphrases are more user-friendly and also more difficult to guess than a passphrase based on a single language. However, their work only studied passphrases based on standard alphanumeric characters. In this paper, we measure the password strength of using a multilingual passphrase that contains characters outside of the standard alphanumeric characters and assess the availability of such multilingual passwords for websites with free account creation in the Tranco top 50 list and the Semrush top 20 websites in China list. We find that password strength meters like zxcvbn and MultiPSM surprisingly struggle with correctly assessing the strength of non-English-only passphrases with MultiPSM encountering an encoding issue with non-alphanumeric characters. In addition, we find that half of all tested valid websites accept multilingual passphrases but three websites struggled in general due to imposing a maximum password character limitation.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 40 [1] => 118 ) ) ) [post__not_in] => Array ( [0] => 20924 ) )

GAP-Diff: Protecting JPEG-Compressed Images from Diffusion-based Facial Customization

Haotian Zhu (Nanjing University of Science and Technology), Shuchao Pang (Nanjing University of Science and Technology), Zhigang Lu (Western Sydney University), Yongbin Zhou (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61)

Read More

Revisiting Concept Drift in Windows Malware Detection: Adaptation to...

Adrian Shuai Li (Purdue University), Arun Iyengar (Intelligent Data Management and Analytics, LLC), Ashish Kundu (Cisco Research), Elisa Bertino (Purdue University)

Read More

Are some prices more equal than others? Evaluating store-based...

Hugo Jonker (Open University Netherlands), Stefan Karsch (TH Koln), Benjamin Krumnow (TH Koln), Godfried Meesters (Open University Netherlands)

Read More

Moneta: Ex-Vivo GPU Driver Fuzzing by Recalling In-Vivo Execution...

Joonkyo Jung (Department of Computer Science, Yonsei University), Jisoo Jang (Department of Computer Science, Yonsei University), Yongwan Jo (Department of Computer Science, Yonsei University), Jonas Vinck (DistriNet, KU Leuven), Alexios Voulimeneas (CYS, TU Delft), Stijn Volckaert (DistriNet, KU Leuven), Dokyung Song (Department of Computer Science, Yonsei University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)