Tolga O. Atalay (A2 Labs LLC), Tianyuan Yu (UCLA), Lixia Zhang (UCLA), Angelos Stavrou (A2 Labs LLC)

Cellular core networks are deployed as a set of Virtual Network Functions (VNFs) to dynamically provide customized connectivity for specific use cases. These VNFs are software-based applications whose trust management and security rely on well-established network domain solutions and certificate-based trust mechanisms. As VNFs are frequently redeployed, migrated, and scaled across a diverse ecosystem, the reliance on static trust solutions introduces bottlenecks and operational complexities. This approach to trust undermines the ability to ensure seamless, secure, and efficient interactions in a rapidly evolving cellular ecosystem. Addressing these challenges necessitates a fundamental shift toward an architectural foundation that inherently embeds security and trust into the communication fabric. Named Data Networking (NDN) offers such a foundation by focusing on data-centric security, where trust is embedded within the data itself rather than being dependent on external entities or channels. Leveraging named entities, NDN makes it possible to construct fine-grained trust relationships across cellular domains, tenants, and network slices. This paradigm shift enables the cellular core to move beyond static security solutions, providing a cohesive and scalable framework for managing trust in next-generation cellular networks. In this paper, we propose the adoption of the NDN network model to address the limitations of traditional approaches and achieve seamless security that evolves with the dynamic demands of 5G and beyond networks.

View More Papers

The Philosopher’s Stone: Trojaning Plugins of Large Language Models

Tian Dong (Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Guoxing Chen (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Yan Meng (Shanghai Jiao Tong University), Shaofeng Li (Southeast University), Zhen Liu (Shanghai Jiao Tong University), Haojin Zhu (Shanghai Jiao Tong University)

Read More

THEMIS: Regulating Textual Inversion for Personalized Concept Censorship

Yutong Wu (Nanyang Technological University), Jie Zhang (Centre for Frontier AI Research, Agency for Science, Technology and Research (A*STAR), Singapore), Florian Kerschbaum (University of Waterloo), Tianwei Zhang (Nanyang Technological University)

Read More

DiStefano: Decentralized Infrastructure for Sharing Trusted Encrypted Facts and...

Sofia Celi (Brave Software), Alex Davidson (NOVA LINCS & Universidade NOVA de Lisboa), Hamed Haddadi (Imperial College London & Brave Software), Gonçalo Pestana (Hashmatter), Joe Rowell (Information Security Group, Royal Holloway, University of London)

Read More

SHAFT: Secure, Handy, Accurate and Fast Transformer Inference

Andes Y. L. Kei (Chinese University of Hong Kong), Sherman S. M. Chow (Chinese University of Hong Kong)

Read More