Hyeongjun Choi, Young Eun Kwon, Ji Won Yoon (Korea University)

This paper presents mmProcess, a novel phasebased approach for speech reconstruction using millimeterwave (mmWave) technology, offering an alternative to existing Doppler-based and deep learning-dependent methods. By leveraging the phase variations in mmWave signals, mmProcess enables precise detection of fine vibrations caused by sound, facilitating accurate speech reconstruction without the need for large training datasets, prior knowledge, or complex neural networks. This eliminates the limitations of deep learning approaches, such as degraded performance with unseen languages and the significant time and cost required for system development. mmProcess combines advanced signal processing techniques, including range processing, phase unwrapping, and noise filtering, to transform raw mmWave radar data into high-fidelity speech signals. Experimental evaluations validate the effectiveness of the method, demonstrating its capability to operate in challenging scenarios while maintaining adaptability and cost efficiency.

View More Papers

Victim-Centred Abuse Investigations and Defenses for Social Media Platforms

Zaid Hakami (Florida International University and Jazan University), Ashfaq Ali Shafin (Florida International University), Peter J. Clarke (Florida International University), Niki Pissinou (Florida International University), and Bogdan Carbunar (Florida International University)

Read More

Designing and Evaluating a Testbed for the Matter Protocol:...

Ravindra Mangar (Dartmouth College) Jingyu Qian (University of Illinois), Wondimu Zegeye (Morgan State University), Abdulrahman AlRabah, Ben Civjan, Shalni Sundram, Sam Yuan, Carl A. Gunter (University of Illinois), Mounib Khanafer (American University of Kuwait), Kevin Kornegay (Morgan State University), Timothy J. Pierson, David Kotz (Dartmouth College)

Read More

Work-in-Progress: Detecting Browser-in-the-Browser Attacks from Their Behaviors and DOM...

Ryusei Ishikawa, Soramichi Akiyama, and Tetsutaro Uehara (Ritsumeikan University)

Read More

Diffence: Fencing Membership Privacy With Diffusion Models

Yuefeng Peng (University of Massachusetts Amherst), Ali Naseh (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Read More