Seyed Ali Ghazi Asgar, Narasimha Reddy (Texas A&M University)

The Internet of Things (IoT) is experiencing exponential growth, with projections estimating over 29 billion devices by 2027. These devices often have limited resources, necessitating the use of lightweight communication protocols. MQTT is a widely used protocol in the IoT domain, but defective security configurations can pose significant risks for the users. In this work, we classify the most commonly used open-source IoT applications that utilize MQTT as their primary communication protocol and evaluate the associated attack scenarios. Our analysis shows that home automation IoT applications have the highest number of exposed devices. In addition, our examination suggests that tracking applications are prone to higher risks as the normalized percentage of exposed devices for this category is 6.85% while only 2.91% of home automation devices are exposed. To tackle these issues, we developed a lightweight, opensource exposure detection system suitable for both computerbased clients and ESP32 microcontrollers. This system warns the users of compromised MQTT broker which enhances the overall security in IoT deployments without any significant overhead.

View More Papers

PolicyPulse: Precision Semantic Role Extraction for Enhanced Privacy Policy...

Andrick Adhikari (University of Denver), Sanchari Das (University of Denver), Rinku Dewri (University of Denver)

Read More

SafeSplit: A Novel Defense Against Client-Side Backdoor Attacks in...

Phillip Rieger (Technical University of Darmstadt), Alessandro Pegoraro (Technical University of Darmstadt), Kavita Kumari (Technical University of Darmstadt), Tigist Abera (Technical University of Darmstadt), Jonathan Knauer (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Passive Inference Attacks on Split Learning via Adversarial Regularization

Xiaochen Zhu (National University of Singapore & Massachusetts Institute of Technology), Xinjian Luo (National University of Singapore & Mohamed bin Zayed University of Artificial Intelligence), Yuncheng Wu (Renmin University of China), Yangfan Jiang (National University of Singapore), Xiaokui Xiao (National University of Singapore), Beng Chin Ooi (National University of Singapore)

Read More

BinEnhance: An Enhancement Framework Based on External Environment Semantics...

Yongpan Wang (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Hong Li (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Xiaojie Zhu (King Abdullah University of Science and Technology, Thuwal, Saudi Arabia), Siyuan Li (Institute of Information Engineering Chinese…

Read More