Sujin Han (KAIST) Diana A. Vasile (Nokia Bell Labs), Fahim Kawsar (Nokia Bell Labs, University of Glasgow), Chulhong Min (Nokia Bell Labs)

Wearable devices, often used in healthcare and wellness, collect personal health data via sensors and share it with nearby devices for processing. Considering that healthcare decisions may be based on the collected data, ensuring the privacy and security of data sharing is critical. As the hardware and abilities of these wearable devices evolve, we observe a shift in perspectives: they will no longer be mere data collectors, rather they become empowered to collaborate and provide users with enhanced insights directly from their bodies with ondevice processing. However, today’s data sharing protocols do not support secure data sharing directly between wearables. To this end, we develop a comprehensive threat model for such scenarios and propose a protocol, SecuWear, for secure real-time data sharing between wearable devices. It enables secure data sharing between any set of devices owned by a user by authenticating devices with the help of an orchestrator device. This orchestrator, one of the user’s devices, enforces access control policies and verifies the authenticity of public keys. Once authenticated, the data encryption key is directly shared between the data provider and data consumer devices. Furthermore, SecuWear enables multiple data consumers to subscribe to one data provider, enabling efficient and scalable data sharing. In evaluation, we conduct an informal security analysis to demonstrate the robustness of SecuWear and the resource overhead. It imposes latency overhead of approximately 1.7s for setting up a data sharing session, which is less than 0.2% for a session lasting 15 minutes.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 118 [1] => 106 ) ) ) [post__not_in] => Array ( [0] => 19948 ) )

Power-Related Side-Channel Attacks using the Android Sensor Framework

Mathias Oberhuber (Graz University of Technology), Martin Unterguggenberger (Graz University of Technology), Lukas Maar (Graz University of Technology), Andreas Kogler (Graz University of Technology), Stefan Mangard (Graz University of Technology)

Read More

Alba: The Dawn of Scalable Bridges for Blockchains

Giulia Scaffino (TU Wien), Lukas Aumayr (TU Wien), Mahsa Bastankhah (Princeton University), Zeta Avarikioti (TU Wien), Matteo Maffei (TU Wien)

Read More

PowerRadio: Manipulate Sensor Measurement via Power GND Radiation

Yan Jiang (Zhejiang University), Xiaoyu Ji (Zhejiang University), Yancheng Jiang (Zhejiang University), Kai Wang (Zhejiang University), Chenren Xu (Peking University), Wenyuan Xu (Zhejiang University)

Read More

Repurposing Neural Networks for Efficient Cryptographic Computation

Xin Jin (The Ohio State University), Shiqing Ma (University of Massachusetts Amherst), Zhiqiang Lin (The Ohio State University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)