Fenghao Dong (CMU)

Network packet traces are critical for security tasks which includes longitudinal traffic analysis, system testing, and future workload forecasting. However, storing these traces over extended periods is costly and subject to compliance constraints. Deep Generative Compression (DGC) offers a solution by generating inexact but structurally accurate synthetic traces that preserve essential features without storing full sensitive data. This paper examines key research questions on the feasibility, cost-competitiveness, and scalability of DGC for large-scale, real-world network environments. We investigate the types of applications that benefit from DGC and design a framework to reliably operate for them. Our initial evaluation indicates that DGC can be an alternative to standard storage techniques (such as gzip or sampling) while meeting regulatory needs and resource limits. We further discuss open challenges and future directions, such as improving efficiency in streaming operations, optimizing model scalability, and addressing privacy risks in this scenario.

View More Papers

Scale-MIA: A Scalable Model Inversion Attack against Secure Federated...

Shanghao Shi (Virginia Tech), Ning Wang (University of South Florida), Yang Xiao (University of Kentucky), Chaoyu Zhang (Virginia Tech), Yi Shi (Virginia Tech), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Read More

The Kids Are All Right: Investigating the Susceptibility of...

Elijah Bouma-Sims (Carnegie Mellon University), Lily Klucinec (Carnegie Mellon University), Mandy Lanyon (Carnegie Mellon University), Julie Downs (Carnegie Mellon University), Lorrie Faith Cranor (Carnegie Mellon University)

Read More

CCTAG: Configurable and Combinable Tagged Architecture

Zhanpeng Liu (Peking University), Yi Rong (Tsinghua University), Chenyang Li (Peking University), Wende Tan (Tsinghua University), Yuan Li (Zhongguancun Laboratory), Xinhui Han (Peking University), Songtao Yang (Zhongguancun Laboratory), Chao Zhang (Tsinghua University)

Read More

YuraScanner: Leveraging LLMs for Task-driven Web App Scanning

Aleksei Stafeev (CISPA Helmholtz Center for Information Security), Tim Recktenwald (CISPA Helmholtz Center for Information Security), Gianluca De Stefano (CISPA Helmholtz Center for Information Security), Soheil Khodayari (CISPA Helmholtz Center for Information Security), Giancarlo Pellegrino (CISPA Helmholtz Center for Information Security)

Read More