Fenghao Dong (CMU)

Network packet traces are critical for security tasks which includes longitudinal traffic analysis, system testing, and future workload forecasting. However, storing these traces over extended periods is costly and subject to compliance constraints. Deep Generative Compression (DGC) offers a solution by generating inexact but structurally accurate synthetic traces that preserve essential features without storing full sensitive data. This paper examines key research questions on the feasibility, cost-competitiveness, and scalability of DGC for large-scale, real-world network environments. We investigate the types of applications that benefit from DGC and design a framework to reliably operate for them. Our initial evaluation indicates that DGC can be an alternative to standard storage techniques (such as gzip or sampling) while meeting regulatory needs and resource limits. We further discuss open challenges and future directions, such as improving efficiency in streaming operations, optimizing model scalability, and addressing privacy risks in this scenario.

View More Papers

BitShield: Defending Against Bit-Flip Attacks on DNN Executables

Yanzuo Chen (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Sihang Hu (Huawei Technologies), Tianxiang Li (Huawei Technologies), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

Duumviri: Detecting Trackers and Mixed Trackers with a Breakage...

He Shuang (University of Toronto), Lianying Zhao (Carleton University and University of Toronto), David Lie (University of Toronto)

Read More

On Borrowed Time – Preventing Static Side-Channel Analysis

Robert Dumitru (Ruhr University Bochum and The University of Adelaide), Thorben Moos (UCLouvain), Andrew Wabnitz (Defence Science and Technology Group), Yuval Yarom (Ruhr University Bochum)

Read More

Scale-MIA: A Scalable Model Inversion Attack against Secure Federated...

Shanghao Shi (Virginia Tech), Ning Wang (University of South Florida), Yang Xiao (University of Kentucky), Chaoyu Zhang (Virginia Tech), Yi Shi (Virginia Tech), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Read More