Anis Yusof (NU Singapore)

To improve the preparedness of Security Operation Center (SOC), analysts may leverage provenance graphs to deepen their understanding of existing cyberattacks. However, the unknown nature of a cyberattack may result in a provenance graph with incomplete details, thus limiting the comprehensive knowledge of the cyberattack due to partial indicators. Furthermore, using outdated provenance graphs imposes a limit on the understanding of cyberattack trends. This negatively impacts SOC operations that are responsible for detecting and responding to threats and incidents. This paper introduces PROVCON, a framework that constructs a provenance graph representative of a cyberattack. Based on documented cyberattacks, the framework reproduces the cyberattack and generates the corresponding data for attack analysis. The knowledge gained from existing cyberattacks through the constructed provenance graph is instrumental in enhancing the understanding and improving decision-making in SOC. With the use of PROVCON, SOC can improve its cybersecurity posture by aligning its operations based on insights derived from documented observations.

View More Papers

LAMP: Lightweight Approaches for Latency Minimization in Mixnets with...

Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (University of Michigan), Claudia Diaz (KU Leuven)

Read More

A New PPML Paradigm for Quantized Models

Tianpei Lu (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Bingsheng Zhang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Xiaoyuan Zhang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

Read More

Probe-Me-Not: Protecting Pre-trained Encoders from Malicious Probing

Ruyi Ding (Northeastern University), Tong Zhou (Northeastern University), Lili Su (Northeastern University), Aidong Adam Ding (Northeastern University), Xiaolin Xu (Northeastern University), Yunsi Fei (Northeastern University)

Read More