Tianyue Chu, Devriş İşler (IMDEA Networks Institute & Universidad Carlos III de Madrid), Nikolaos Laoutaris (IMDEA Networks Institute)

Federated Learning (FL) has evolved into a pivotal paradigm for collaborative machine learning, enabling a centralised server to compute a global model by aggregating the local models trained by clients. However, the distributed nature of FL renders it susceptible to poisoning attacks that exploit its linear aggregation rule called FEDAVG. To address this vulnerability, FEDQV has been recently introduced as a superior alternative to FEDAVG, specifically designed to mitigate poisoning attacks by taxing more than linearly deviating clients. Nevertheless, FEDQV remains exposed to privacy attacks that aim to infer private information from clients’ local models. To counteract such privacy threats, a well-known approach is to use a Secure Aggregation (SA) protocol to ensure that the server is unable to inspect individual trained models as it aggregates them. In this work, we show how to implement SA on top of FEDQV in order to address both poisoning and privacy attacks. We mount several privacy attacks against FEDQV and demonstrate the effectiveness of SA in countering them.

View More Papers

Vision: Towards Fully Shoulder-Surfing Resistant and Usable Authentication for...

Tobias Länge (Karlsruhe Institute of Technology), Philipp Matheis (Karlsruhe Institute of Technology), Reyhan Düzgün (Ruhr University Bochum), Melanie Volkamer (Karlsruhe Institute of Technology), Peter Mayer (Karlsruhe Institute of Technology, University of Southern Denmark)

Read More

DRAINCLoG: Detecting Rogue Accounts with Illegally-obtained NFTs using Classifiers...

Hanna Kim (KAIST), Jian Cui (Indiana University Bloomington), Eugene Jang (S2W Inc.), Chanhee Lee (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST)

Read More

Pisces: Private and Compliable Cryptocurrency Exchange

Ya-Nan Li (The University of Sydney), Tian Qiu (The University of Sydney), Qiang Tang (The University of Sydney)

Read More

50 Shades of Support: A Device-Centric Analysis of Android...

Abbas Acar (Florida International University), Güliz Seray Tuncay (Google), Esteban Luques (Florida International University), Harun Oz (Florida International University), Ahmet Aris (Florida International University), Selcuk Uluagac (Florida International University)

Read More