Johnathan Wilkes, John Anny (Palo Alto Networks)

By embracing automation, organizations can transcend manual limitations to reduce mean time to response and address exposures consistently across their cybersecurity infrastructure. In the dynamic realm of cybersecurity, swiftly addressing externally discovered exposures is paramount, as each represents a ticking time bomb. A paradigm shift towards automation to enhance speed, efficiency, and uniformity in the remediation process is needed to answer the question, "You found the exposure, now what?". Traditional manual approaches are not only time-consuming but also prone to human error, underscoring the need for a comprehensive, automated solution. Acknowledging the diversity of exposures and the array of security tools, we will propose how to remediate common external exposures, such as open ports and dangling domains. The transformative nature of this shift is crucial, particularly in the context of multiple cloud platforms with distinct data enrichment and remediation capabilities.

View More Papers

IRRedicator: Pruning IRR with RPKI-Valid BGP Insights

Minhyeok Kang (Seoul National University), Weitong Li (Virginia Tech), Roland van Rijswijk-Deij (University of Twente), Ted "Taekyoung" Kwon (Seoul National University), Taejoong Chung (Virginia Tech)

Read More

DorPatch: Distributed and Occlusion-Robust Adversarial Patch to Evade Certifiable...

Chaoxiang He (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Bin B. Zhu (Microsoft Research), Yimiao Zeng (Huazhong University of Science and Technology), Hanqing Hu (Huazhong University of Science and Technology), Xiaofan Bai (Huazhong University of Science and Technology), Hai Jin (Huazhong University of Science and Technology), Dongmei Zhang…

Read More

Parrot-Trained Adversarial Examples: Pushing the Practicality of Black-Box Audio...

Rui Duan (University of South Florida), Zhe Qu (Central South University), Leah Ding (American University), Yao Liu (University of South Florida), Zhuo Lu (University of South Florida)

Read More

WIP: Towards Practical LiDAR Spoofing Attack against Vehicles Driving...

Ryo Suzuki (Keio University), Takami Sato (University of California, Irvine), Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More