Matt Jansen, Rakesh Bobba, Dave Nevin (Oregon State University)

Provenance-based Intrusion Detection Systems (PIDS) are threat detection methods which utilize system provenance graphs as a medium for performing detection, as opposed to conventional log analysis and correlation techniques. Prior works have explored the creation of system provenance graphs from audit data, graph summarization and indexing techniques, as well as methods for utilizing graphs to perform attack detection and investigation. However, insufficient focus has been placed on the practical usage of PIDS for detection, from the perspective of end-user security analysts and detection engineers within a Security Operations Center (SOC). Specifically, for rule-based PIDS which depend on an underlying signature database of system provenance graphs representing attack behavior, prior work has not explored the creation process of these graph-based signatures or rules. In this work, we perform a user study to compare the difficulty associated with creating graph-based detection, as opposed to conventional log-based detection rules. Participants in the user study create both log and graph-based detection rules for attack scenarios of varying difficulty, and provide feedback of their usage experience after the scenarios have concluded. Through qualitative analysis we identify and explain various trends in both rule length and rule creation time. We additionally run the produced detection rules against the attacks described in the scenarios using open source tooling to compare the accuracy of the rules produced by the study participants. We observed that both log and graph-based methods resulted in high detection accuracy, while the graph-based creation process resulted in higher interpretability and low false positives as compared to log-based methods.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 104 [1] => 70 ) ) ) [post__not_in] => Array ( [0] => 17628 ) )

Work-in-Progress: A Large-Scale Long-term Analysis of Online Fraud across...

Yi Han, Shujiang Wu, Mengmeng Li, Zixi Wang, and Pengfei Sun (F5)

Read More

PANDORA: Jailbreak GPTs by Retrieval Augmented Generation Poisoning

Gelei Deng, Yi Liu (Nanyang Technological University), Yuekang Li (The University of New South Wales), Wang Kailong(Huazhong University of Science and Technology), Tianwei Zhang, Yang Liu (Nanyang Technological University)

Read More

Experimental Analyses of the Physical Surveillance Risks in Client-Side...

Ashish Hooda (University of Wisconsin-Madison), Andrey Labunets (UC San Diego), Tadayoshi Kohno (University of Washington), Earlence Fernandes (UC San Diego)

Read More

Vision: “AccessFormer”: Feedback-Driven Access Control Policy

Sakuna Harinda Jayasundara, Nalin Asanka Gamagedara Arachchilage, Giovanni Russello (University of Auckland)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)