Seth Hastings, Tyler Moore, Corey Bolger, Philip Schumway (University of Tulsa)

This paper presents a method for reduction and aggregation of raw authentication logs into user-experience focused "event logs". The event logs exclude non-interactive authentication data and capture critical aspects of the authentication experience to deliver a distilled representation of an authentication. This method is demonstrated using real data from a university, spanning three full semesters. Event construction is presented along with several examples to demonstrate the utility of event logs in the context of a Security Operations Center (SOC). Authentication success rates are shown to widely vary, with the bottom 5% of users failing more than one third of authentication events. A proactive SOC could utilize such data to assist struggling users. Event logs can also identify persistently locked out users. 2.5% of the population under study was locked out in a given week, indicating that interventions by SOC analysts to reinstate locked-out users could be manageable. A final application of event logs can identify problematic applications with above average authentication failure rates that spike periodically. It also identifies lapsed applications with no successful authentications, which account for over 50% of unique applications in our sample.

View More Papers

Experimental Analyses of the Physical Surveillance Risks in Client-Side...

Ashish Hooda (University of Wisconsin-Madison), Andrey Labunets (UC San Diego), Tadayoshi Kohno (University of Washington), Earlence Fernandes (UC San Diego)

Read More

WIP: Modeling and Detecting Falsified Vehicle Trajectories Under Data...

Jun Ying, Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan and Google)

Read More

WIP: Body Posture Analysis as an Objective Measurement for...

Cherin Lim, Tianhao Xu, Prashanth Rajivan (University of Washington)

Read More

WIP: Threat Modeling Laser-Induced Acoustic Interference in Computer Vision-Assisted...

Nina Shamsi (Northeastern University), Kaeshav Chandrasekar, Yan Long, Christopher Limbach (University of Michigan), Keith Rebello (Boeing), Kevin Fu (Northeastern University)

Read More