Tobias Länge (Karlsruhe Institute of Technology), Philipp Matheis (Karlsruhe Institute of Technology), Reyhan Düzgün (Ruhr University Bochum), Melanie Volkamer (Karlsruhe Institute of Technology), Peter Mayer (Karlsruhe Institute of Technology, University of Southern Denmark)

Virtual reality (VR) is a growing technology with social, gaming and commercial applications. Due to the sensitive data involved, these systems require secure authentication. Shoulder-surfing, in particular, poses a significant threat as (1) interaction is mostly performed by means of visible gestures and (2) wearing the glasses prevents noticing bystanders. In this paper, we analyze research proposing shoulder-surfing resistant schemes for VR and present new shoulder-surfing resistant authentication schemes. Furthermore, we conducted a user study and found authenticating with our proposed schemes is efficient with times as low as 5.1 seconds. This is faster than previous shoulder-surfing resistant VR schemes, while offering similar user satisfaction.

View More Papers

Facilitating Threat Modeling by Leveraging Large Language Models

Isra Elsharef, Zhen Zeng (University of Wisconsin-Milwaukee), Zhongshu Gu (IBM Research)

Read More

Strengthening Privacy in Robust Federated Learning through Secure Aggregation

Tianyue Chu, Devriş İşler (IMDEA Networks Institute & Universidad Carlos III de Madrid), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More

Understanding the Implementation and Security Implications of Protective DNS...

Mingxuan Liu (Zhongguancun Laboratory; Tsinghua University), Yiming Zhang (Tsinghua University), Xiang Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Xiaofeng Zheng (Institute for Network Sciences and Cyberspace, Tsinghua University; QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.)

Read More