Sakuna Harinda Jayasundara, Nalin Asanka Gamagedara Arachchilage, Giovanni Russello (University of Auckland)

Access control failures can cause data breaches, putting entire organizations at risk of financial loss and reputation damage. One of the main reasons for such failures is the mistakes made by system administrators when they manually generate low-level access control policies directly from highlevel requirement specifications. Therefore, to help administrators in that policy generation process, previous research proposed graphical policy authoring tools and automated policy generation frameworks. However, in reality, those tools and frameworks are neither usable nor reliable enough to help administrators generate access control policies accurately while avoiding access control failures. Therefore, as a solution, in this paper, we present “AccessFormer”, a novel policy generation framework that improves both the usability and reliability of access control policy generation. Through the proposed framework, on the one hand, we improve the reliability of policy generation by utilizing Language Models (LMs) to generate, verify, and refine access control policies by incorporating the system’s as well as administrator’s feedback. On the other hand, we also improve the usability of the policy generation by proposing a usable policy authoring interface designed to help administrators understand policy generation mistakes and accurately provide feedback.

View More Papers

A Comparative Analysis of Difficulty Between Log and Graph-Based...

Matt Jansen, Rakesh Bobba, Dave Nevin (Oregon State University)

Read More

SENSE: Enhancing Microarchitectural Awareness for TEEs via Subscription-Based Notification

Fan Sang (Georgia Institute of Technology), Jaehyuk Lee (Georgia Institute of Technology), Xiaokuan Zhang (George Mason University), Meng Xu (University of Waterloo), Scott Constable (Intel), Yuan Xiao (Intel), Michael Steiner (Intel), Mona Vij (Intel), Taesoo Kim (Georgia Institute of Technology)

Read More

SLMIA-SR: Speaker-Level Membership Inference Attacks against Speaker Recognition Systems

Guangke Chen (ShanghaiTech University), Yedi Zhang (National University of Singapore), Fu Song (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences)

Read More

“This is different from the Western world”: Understanding Password...

Aniqa Alam, Elizabeth Stobert, Robert Biddle (Carleton University)

Read More