Sakuna Harinda Jayasundara, Nalin Asanka Gamagedara Arachchilage, Giovanni Russello (University of Auckland)

Access control failures can cause data breaches, putting entire organizations at risk of financial loss and reputation damage. One of the main reasons for such failures is the mistakes made by system administrators when they manually generate low-level access control policies directly from highlevel requirement specifications. Therefore, to help administrators in that policy generation process, previous research proposed graphical policy authoring tools and automated policy generation frameworks. However, in reality, those tools and frameworks are neither usable nor reliable enough to help administrators generate access control policies accurately while avoiding access control failures. Therefore, as a solution, in this paper, we present “AccessFormer”, a novel policy generation framework that improves both the usability and reliability of access control policy generation. Through the proposed framework, on the one hand, we improve the reliability of policy generation by utilizing Language Models (LMs) to generate, verify, and refine access control policies by incorporating the system’s as well as administrator’s feedback. On the other hand, we also improve the usability of the policy generation by proposing a usable policy authoring interface designed to help administrators understand policy generation mistakes and accurately provide feedback.

View More Papers

The Walls Have Ears: Gauging Security Awareness in a...

Gokul Jayakrishnan, Vijayanand Banahatti, Sachin Lodha (TCS Research Tata Consultancy Services Ltd.)

Read More

WIP: Towards a Certifiably Robust Defense for Multi-label Classifiers...

Dennis Jacob, Chong Xiang, Prateek Mittal (Princeton University)

Read More

WIP: Security Vulnerabilities and Attack Scenarios in Smart Home...

Haoqiang Wang (Chinese Academy of Sciences, University of Chinese Academy of Sciences, Indiana University Bloomington), Yichen Liu (Indiana University Bloomington), Yiwei Fang, Ze Jin, Qixu Liu (Chinese Academy of Sciences, University of Chinese Academy of Sciences, Indiana University Bloomington), Luyi Xing (Indiana University Bloomington)

Read More