L Yasmeen Abdrabou (Lancaster University), Mariam Hassib (Fortiss Research Institute of the Free State of Bavaria), Shuqin Hu (LMU Munich), Ken Pfeuffer (Aarhus University), Mohamed Khamis (University of Glasgow), Andreas Bulling (University of Stuttgart), Florian Alt (University of the Bundeswehr Munich)

Existing gaze-based methods for user identification either require special-purpose visual stimuli or artificial gaze behaviour. Here, we explore how users can be differentiated by analysing natural gaze behaviour while freely looking at images. Our approach is based on the observation that looking at different images, for example, a picture from your last holiday, induces stronger emotional responses that are reflected in gaze behavioor and, hence, is unique to the person having experienced that situation. We collected gaze data in a remote study (N = 39) where participants looked at three image categories: personal images, other people’s images, and random images from the Internet. We demonstrate the potential of identifying different people using machine learning with an accuracy of 85%. The results pave the way towards a new class of authentication methods solely based on natural human gaze behaviour.

View More Papers

User Comprehension and Comfort with Eye-Tracking and Hand-Tracking Permissions...

Kaiming Cheng (University of Washington), Mattea Sim (Indiana University), Tadayoshi Kohno (University of Washington), Franziska Roesner (University of Washington)

Read More

Untangle: Multi-Layer Web Server Fingerprinting

Cem Topcuoglu (Northeastern University), Kaan Onarlioglu (Akamai Technologies), Bahruz Jabiyev (Northeastern University), Engin Kirda (Northeastern University)

Read More

FirmLine: a Generic Pipeline for Large-Scale Analysis of Non-Linux...

Alexander Balgavy (Independent), Marius Muench (University of Birmingham)

Read More

DeGPT: Optimizing Decompiler Output with LLM

Peiwei Hu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Ruigang Liang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, China)

Read More