Cem Topcuoglu (Northeastern University), Andrea Martinez (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University), Engin Kirda (Northeastern University)

Operating Systems (OSs) play a crucial role in shaping user perceptions of security and privacy. Yet, the distinct perception of different OS users received limited attention from security researchers. The two most dominant operating systems today are MacOS and Microsoft Windows. Although both operating systems contain advanced cybersecurity features that have made it more difficult for attackers to launch their attacks and compromise users, the folk wisdom suggests that users regard MacOS as being the more secure operating system among the two. However, this common belief regarding the comparison of these two operating systems, as well as the mental models behind it, have not been studied yet.

In this paper, by conducting detailed surveys with a large number of MacOS and Windows users (n = 208) on Amazon Mechanical Turk, we aim to understand the differences in perception among MacOS and Windows users concerning the cybersecurity and privacy of these operating systems. Our results confirm the folk wisdom and show that many Windows and MacOS users indeed perceive MacOS as a more secure and private operating system compared to Windows, basing their belief on reputation rather than technical decisions. Additionally, we found that MacOS users often take fewer security measures, influenced by a strong confidence in their system’s malware protection capabilities. Moreover, our analysis highlights the impact of the operating system’s reputation and the primary OS used on users’ perceptions of security and privacy. Finally, our qualitative analysis revealed many misconceptions such as being MacOS malware-proof. Overall, our findings suggest the need for more focused security training and OS improvements and show the shreds of evidence that the mental model of users in this regard is a vital process to predict new attack surfaces and propose usable solutions.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 104 [1] => 32 ) ) ) [post__not_in] => Array ( [0] => 17599 ) )

Adopt a PET! An Exploration of PETs, Policy, and...

Masoumeh Shafieinejad (Vector Institute), Xi He (Vector Institute and Univesity of Waterloo), Bailey Kacsmar (Amii & University of Alberta)

Read More

Eavesdropping on Black-box Mobile Devices via Audio Amplifier's EMR

Huiling Chen (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Wenqiang Jin (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Yupeng Hu (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Zhenyu Ning (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Kenli Li (College…

Read More

User Experiences with Suspicious Emails in Virtual Reality Headsets:...

Filipo Sharevski (DePaul University), Jennifer Vander Loop (DePaul University), Sarah Ferguson (DePaul University), Viktorija Paneva (LMU Munich)

Read More

“Lose Your Phone, Lose Your Identity”: Exploring Users’ Perceptions...

Michael Lutaaya, Hala Assal, Khadija Baig, Sana Maqsood, Sonia Chiasson (Carleton University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)