Konrad-Felix Krentz (Uppsala University), Thiemo Voigt (Uppsala University, RISE Computer Science)

Object Security for Constrained RESTful Environments (OSCORE) is an end-to-end security solution for the Constrained Application Protocol (CoAP), which, in turn, is a lightweight application layer protocol for the Internet of things (IoT). The recently standardized Echo option allows OSCORE servers to check if a request was created recently. Previously, OSCORE only offered a counter-based replay protection, which is why delayed OSCORE requests were accepted as fresh. However, the Echo-based replay protection entails an additional round trip, thereby prolonging delays, increasing communication overhead, and deteriorating reliability. Moreover, OSCORE remains vulnerable to a denial-of-sleep attack. In this paper, we propose a version of OSCORE with a revised replay protection, namely OSCORE next-generation (OSCORE-NG). OSCORENG fixes OSCORE’s denial-of-sleep vulnerability and provides freshness guarantees that surpass those of the Echo-based replay protection, while dispensing with an additional round trip. Furthermore, in long-running sessions, OSCORE-NG incurs even less communication overhead than OSCORE’s counter-based replay protection. OSCORE-NG’s approach is to entangle timestamps in nonces. Except during synchronization, CoAP nodes truncate these timestamps in outgoing OSCORE-NG messages. Receivers fail to restore a timestamp if and only if an OSCORE-NG message is delayed by more than 7.848s in our implementation by default. In effect, older OSCORE-NG messages get rejected.

View More Papers

DEMASQ: Unmasking the ChatGPT Wordsmith

Kavita Kumari (Technical University of Darmstadt, Germany), Alessandro Pegoraro (Technical University of Darmstadt), Hossein Fereidooni (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

SOC Service Areas: Identification, Prioritization, and Implementation

Christopher Rodman, Breanna Kraus, Justin Novak (SEI/CERT)

Read More

Improving the Robustness of Transformer-based Large Language Models with...

Lujia Shen (Zhejiang University), Yuwen Pu (Zhejiang University), Shouling Ji (Zhejiang University), Changjiang Li (Penn State), Xuhong Zhang (Zhejiang University), Chunpeng Ge (Shandong University), Ting Wang (Penn State)

Read More