Yi Han, Shujiang Wu, Mengmeng Li, Zixi Wang, and Pengfei Sun (F5)

Online fraud has emerged as a formidable challenge in the digital age, presenting a serious threat to individuals and organizations worldwide. Characterized by its ever-evolving nature, this type of fraud capitalizes on the rapid development of Internet technologies and the increasing digitization of financial transactions. In this paper, we address the critical need to understand and combat online fraud by conducting an unprecedented analysis based on extensive real-world transaction data.

Our study involves a multi-angle, multi-platform examination of fraudsters' approaches, behaviors and intentions. The findings of our study are significant, offering detailed insights into the characteristics, patterns and methods of online fraudulent activities and providing a clear picture of the current landscape of digital deception. To the best of our knowledge, we are the first to conduct such large-scale measurements using industrial-level real-world online transaction data.

View More Papers

What Remains Uncaught?: Characterizing Sparsely Detected Malicious URLs on...

Sayak Saha Roy, Unique Karanjit, Shirin Nilizadeh (The University of Texas at Arlington)

Read More

MPCDiff: Testing and Repairing MPC-Hardened Deep Learning Models

Qi Pang (Carnegie Mellon University), Yuanyuan Yuan (HKUST), Shuai Wang (HKUST)

Read More

Don't Interrupt Me – A Large-Scale Study of On-Device...

Marian Harbach (Google), Igor Bilogrevic (Google), Enrico Bacis (Google), Serena Chen (Google), Ravjit Uppal (Google), Andy Paicu (Google), Elias Klim (Google), Meggyn Watkins (Google), Balazs Engedy (Google)

Read More

MOCK: Optimizing Kernel Fuzzing Mutation with Context-aware Dependency

Jiacheng Xu (Zhejiang University), Xuhong Zhang (Zhejiang University), Shouling Ji (Zhejiang University), Yuan Tian (UCLA), Binbin Zhao (Georgia Institute of Technology), Qinying Wang (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University)

Read More