Yi Han, Shujiang Wu, Mengmeng Li, Zixi Wang, and Pengfei Sun (F5)

Online fraud has emerged as a formidable challenge in the digital age, presenting a serious threat to individuals and organizations worldwide. Characterized by its ever-evolving nature, this type of fraud capitalizes on the rapid development of Internet technologies and the increasing digitization of financial transactions. In this paper, we address the critical need to understand and combat online fraud by conducting an unprecedented analysis based on extensive real-world transaction data.

Our study involves a multi-angle, multi-platform examination of fraudsters' approaches, behaviors and intentions. The findings of our study are significant, offering detailed insights into the characteristics, patterns and methods of online fraudulent activities and providing a clear picture of the current landscape of digital deception. To the best of our knowledge, we are the first to conduct such large-scale measurements using industrial-level real-world online transaction data.

View More Papers

Private Aggregate Queries to Untrusted Databases

Syed Mahbub Hafiz (University of California, Davis), Chitrabhanu Gupta (University of California, Davis), Warren Wnuck (University of California, Davis), Brijesh Vora (University of California, Davis), Chen-Nee Chuah (University of California, Davis)

Read More

DynPRE: Protocol Reverse Engineering via Dynamic Inference

Zhengxiong Luo (Tsinghua University), Kai Liang (Central South University), Yanyang Zhao (Tsinghua University), Feifan Wu (Tsinghua University), Junze Yu (Tsinghua University), Heyuan Shi (Central South University), Yu Jiang (Tsinghua University)

Read More

DeGPT: Optimizing Decompiler Output with LLM

Peiwei Hu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Ruigang Liang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, China)

Read More