H M Sabbir Ahmad, Ehsan Sabouni, Akua Dickson (Boston University), Wei Xiao (Massachusetts Institute of Technology), Christos Cassandras, Wenchao Li (Boston University)

We address the security of a network of Connected and Automated Vehicles (CAVs) cooperating to safely navigate through a conflict area (e.g., traffic intersections, merging roadways, roundabouts). Previous studies have shown that such a network can be targeted by adversarial attacks causing traffic jams or safety violations ending in collisions. We focus on attacks targeting the V2X communication network used to share vehicle data and consider as well uncertainties due to noise in sensor measurements and communication channels. To combat these, motivated by recent work on the safe control of CAVs, we propose a trust-aware robust event-triggered decentralized control and coordination framework that can provably guarantee safety. We maintain a trust metric for each vehicle in the network computed based on their behavior and used to balance the tradeoff between conservativeness (when deeming every vehicle as untrustworthy) and guaranteed safety and security. It is important to highlight that our framework is invariant to the specific choice of the trust framework. Based on this framework, we propose an attack detection and mitigation scheme which has twofold benefits: (i) the trust framework is immune to false positives, and (ii) it provably guarantees safety against false positive cases. We use extensive simulations (in SUMO and CARLA) to validate the theoretical guarantees and demonstrate the efficacy of our proposed scheme to detect and mitigate adversarial attacks.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 104 [1] => 68 ) ) ) [post__not_in] => Array ( [0] => 17412 ) )

WIP: Practical Removal Attacks on LiDAR-based Object Detection in...

Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

Read More

Vision: Towards Fully Shoulder-Surfing Resistant and Usable Authentication for...

Tobias Länge (Karlsruhe Institute of Technology), Philipp Matheis (Karlsruhe Institute of Technology), Reyhan Düzgün (Ruhr University Bochum), Melanie Volkamer (Karlsruhe Institute of Technology), Peter Mayer (Karlsruhe Institute of Technology, University of Southern Denmark)

Read More

GNNIC: Finding Long-Lost Sibling Functions with Abstract Similarity

Qiushi Wu (University of Minnesota), Zhongshu Gu (IBM Research), Hani Jamjoom (IBM Research), Kangjie Lu (University of Minnesota)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)