Michele Marazzi, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

ZOOX AutoDriving Security Award Runner-up!

With the increasing interest in autonomous vehicles (AVs), ensuring their safety and security is becoming crucial. The introduction of advanced features has increased the need for various interfaces to communicate with the external world, creating new potential attack vectors that attackers can exploit to alter sensor data. LiDAR sensors are widely employed to support autonomous driving features and generate point cloud data used by ADAS to 3D map the vehicle’s surroundings. Tampering attacks on LiDAR-generated data can compromise the vehicle’s functionalities and seriously threaten passengers and other road users. Existing approaches to LiDAR data tampering detection show security flaws and can be bypassed by attackers through design vulnerabilities. This paper proposes a novel approach for tampering detection of LiDAR-generated data in AVs, employing a watermarking technique. We validate our approach through experiments to prove its feasibility in realworld time-constrained scenarios and its efficacy in detecting LiDAR tampering attacks. Our approach performs better when compared to the current state-of-the-art LiDAR watermarking techniques while addressing critical issues related to watermark security and imperceptibility.

View More Papers

Acoustic Keystroke Leakage on Smart Televisions

Tejas Kannan (University of Chicago), Synthia Qia Wang (University of Chicago), Max Sunog (University of Chicago), Abraham Bueno de Mesquita (University of Chicago Laboratory Schools), Nick Feamster (University of Chicago), Henry Hoffmann (University of Chicago)

Read More

Pencil: Private and Extensible Collaborative Learning without the Non-Colluding...

Xuanqi Liu (Tsinghua University), Zhuotao Liu (Tsinghua University), Qi Li (Tsinghua University), Ke Xu (Tsinghua University), Mingwei Xu (Tsinghua University)

Read More

Differentially Private Dataset Condensation

Tianhang Zheng (University of Missouri-Kansas City), Baochun Li (University of Toronto)

Read More

LibAFL QEMU: A Library for Fuzzing-oriented Emulation

Romain Malmain (EURECOM), Andrea Fioraldi (EURECOM), Aurelien Francillon (EURECOM)

Read More