Masashi Fukunaga (MitsubishiElectric), Takeshi Sugawara (The University of Electro-Communications)

Integrity of sensor measurement is crucial for safe and reliable autonomous driving, and researchers are actively studying physical-world injection attacks against light detection and ranging (LiDAR). Conventional work focused on object/obstacle detectors, and its impact on LiDAR-based simultaneous localization and mapping (SLAM) has been an open research problem. Addressing the issue, we evaluate the robustness of a scan-matching SLAM algorithm in the simulation environment based on the attacker capability characterized by indoor and outdoor physical experiments. Our attack is based on Sato et al.’s asynchronous random spoofing attack that penetrates randomization countermeasures in modern LiDARs. The attack is effective with fake points injected behind the victim vehicle and potentially evades detection-based countermeasures working within the range of object detectors. We discover that mapping is susceptible toward the z-axis, the direction perpendicular to the ground, because feature points are scarce either in the sky or on the road. The attack results in significant changes in the map, such as a downhill converted into an uphill. The false map induces errors to the self-position estimation on the x-y plane in each frame, which accumulates over time. In our experiment, after making laser injection for 5 meters (i.e. 1 second), the victim SLAM’s self-position begins and continues to diverge from the reality, resulting in the 5m shift to the right after running 125 meters. The false map and self-position significantly affect the motion planning algorithm, too; the planned trajectory changes by 3◦ with which the victim vehicle will enter the opposite lane after running 35 meters. Finally, we discuss possible mitigations against the proposed attack.

View More Papers

SOC Service Areas: Identification, Prioritization, and Implementation

Christopher Rodman, Breanna Kraus, Justin Novak (SEI/CERT)

Read More

On the Feasibility of CubeSats Application Sandboxing for Space...

Gabriele Marra (CISPA Helmholtz Center for Information Security), Ulysse Planta (CISPA Helmholtz Center for Information Security and Saarbrücken Graduate School of Computer Science), Philipp Wüstenberg (Chair of Space Technology, Technische Universität Berlin), Ali Abbasi (CISPA Helmholtz Center for Information Security)

Read More

IDA: Hybrid Attestation with Support for Interrupts and TOCTOU

Fatemeh Arkannezhad (UCLA), Justin Feng (UCLA), Nader Sehatbakhsh (UCLA)

Read More

Phoenix: Surviving Unpatched Vulnerabilities via Accurate and Efficient Filtering...

Hugo Kermabon-Bobinnec (Concordia University), Yosr Jarraya (Ericsson Security Research), Lingyu Wang (Concordia University), Suryadipta Majumdar (Concordia University), Makan Pourzandi (Ericsson Security Research)

Read More