Rao Li (The Pennsylvania State University), Shih-Chieh Dai (Pennsylvania State University), Aiping Xiong (Penn State University)

Physical adversarial objects-evasion attacks pose a safety concern for automated driving systems (ADS) and are a significant obstacle to their widespread adoption. To enhance the ability of ADS to address such concerns, we aim to propose a human-AI collaboration framework to bring human in the loop to mitigate the attacks. In this WIP work, we investigate the performance of two object detectors in the YOLO-series (YOLOv5 and YOLOv8) against three physical adversarial object-evasion attacks across different driving contexts in the CARLA simulator. Using static images, we found that YOLOv8 generally outperformed YOLOv5 in attack detection but remained susceptible to certain attacks in specific contexts. Moreover, the study results showed that none of the attacks had achieved a high attack success rate in dynamic tests when system-level features were considered. Nevertheless, such detection results varied across different locations for each attack. Altogether, these results suggest that perception in autonomous driving, the same as human perception in manual driving, might also be context-dependent. Moreover, our results revealed object detection failures at a braking distance anticipated by human drivers, suggesting a necessity to involve human drivers in future evaluation processes.

View More Papers

SigmaDiff: Semantics-Aware Deep Graph Matching for Pseudocode Diffing

Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Read More

DorPatch: Distributed and Occlusion-Robust Adversarial Patch to Evade Certifiable...

Chaoxiang He (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Bin B. Zhu (Microsoft Research), Yimiao Zeng (Huazhong University of Science and Technology), Hanqing Hu (Huazhong University of Science and Technology), Xiaofan Bai (Huazhong University of Science and Technology), Hai Jin (Huazhong University of Science and Technology), Dongmei Zhang…

Read More

CrowdGuard: Federated Backdoor Detection in Federated Learning

Phillip Rieger (Technical University of Darmstadt), Torsten Krauß (University of Würzburg), Markus Miettinen (Technical University of Darmstadt), Alexandra Dmitrienko (University of Würzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Reminding Drivers of the Stalking Vehicles on the Road

Wei Sun, Kannan Srinivsan (The Ohio State University)

Read More