Rao Li (The Pennsylvania State University), Shih-Chieh Dai (Pennsylvania State University), Aiping Xiong (Penn State University)

Physical adversarial objects-evasion attacks pose a safety concern for automated driving systems (ADS) and are a significant obstacle to their widespread adoption. To enhance the ability of ADS to address such concerns, we aim to propose a human-AI collaboration framework to bring human in the loop to mitigate the attacks. In this WIP work, we investigate the performance of two object detectors in the YOLO-series (YOLOv5 and YOLOv8) against three physical adversarial object-evasion attacks across different driving contexts in the CARLA simulator. Using static images, we found that YOLOv8 generally outperformed YOLOv5 in attack detection but remained susceptible to certain attacks in specific contexts. Moreover, the study results showed that none of the attacks had achieved a high attack success rate in dynamic tests when system-level features were considered. Nevertheless, such detection results varied across different locations for each attack. Altogether, these results suggest that perception in autonomous driving, the same as human perception in manual driving, might also be context-dependent. Moreover, our results revealed object detection failures at a braking distance anticipated by human drivers, suggesting a necessity to involve human drivers in future evaluation processes.

View More Papers

Understanding and Analyzing Appraisal Systems in the Underground Marketplaces

Zhengyi Li (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington)

Read More

Using Behavior Monitoring to Identify Privacy Concerns in Smarthome...

Atheer Almogbil, Momo Steele, Sofia Belikovetsky (Johns Hopkins University), Adil Inam (University of Illinois at Urbana-Champaign), Olivia Wu (Johns Hopkins University), Aviel Rubin (Johns Hopkins University), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

Parrot-Trained Adversarial Examples: Pushing the Practicality of Black-Box Audio...

Rui Duan (University of South Florida), Zhe Qu (Central South University), Leah Ding (American University), Yao Liu (University of South Florida), Zhuo Lu (University of South Florida)

Read More

Experimental Analyses of the Physical Surveillance Risks in Client-Side...

Ashish Hooda (University of Wisconsin-Madison), Andrey Labunets (UC San Diego), Tadayoshi Kohno (University of Washington), Earlence Fernandes (UC San Diego)

Read More