Cherin Lim, Tianhao Xu, Prashanth Rajivan (University of Washington)

Human trust is critical for the adoption and continued use of autonomous vehicles (AVs). Experiencing vehicle failures that stem from security threats to underlying technologies that enable autonomous driving, can significantly degrade drivers’ trust in AVs. It is crucial to understand and measure how security threats to AVs impact human trust. To this end, we conducted a driving simulator study with forty participants who underwent three drives including one that had simulated cybersecurity attacks. We hypothesize drivers’ trust in the vehicle is reflected through drivers’ body posture, foot movement, and engagement with vehicle controls during the drive. To test this hypothesis, we extracted body posture features from each frame in the video recordings, computed skeletal angles, and performed k-means clustering on these values to classify drivers’ foot positions. In this paper, we present an algorithmic pipeline for automatic analysis of body posture and objective measurement of trust that could be used for building AVs capable of trust calibration after security attack events.

View More Papers

FP-Fed: Privacy-Preserving Federated Detection of Browser Fingerprinting

Meenatchi Sundaram Muthu Selva Annamalai (University College London), Igor Bilogrevic (Google), Emiliano De Cristofaro (University of California, Riverside)

Read More

DynPRE: Protocol Reverse Engineering via Dynamic Inference

Zhengxiong Luo (Tsinghua University), Kai Liang (Central South University), Yanyang Zhao (Tsinghua University), Feifan Wu (Tsinghua University), Junze Yu (Tsinghua University), Heyuan Shi (Central South University), Yu Jiang (Tsinghua University)

Read More

“I used to live in Florida”: Exploring the Impact...

Imani N. S. Munyaka (University of California, San Diego), Daniel A Delgado, Juan Gilbert, Jaime Ruiz, Patrick Traynor (University of Florida)

Read More

Wait, What Does a SOC Do?

Joe Nehila, Drew Walsh (Deloitte And Touche)

Read More