Wentao Chen, Sam Der, Yunpeng Luo, Fayzah Alshammari, Qi Alfred Chen (University of California, Irvine)

Due to the cyber-physical nature of robotic vehicles, security is especially crucial, as a compromised system not only exposes privacy and information leakage risks, but also increases the risk of harm in the physical world. As such, in this paper, we explore the current vulnerability landscape of robotic vehicles exposed to and thus remotely accessible by any party on the public Internet. Focusing particularly on instances of the Robot Operating System (ROS), a commonly used open-source robotic software framework, we performed new Internet-wide scans of the entire IPv4 address space, identifying, categorizing, and analyzing the ROS-based systems we discovered. We further performed the first measurement of ROS scanners in the wild by setting up ROS honeypots, logging traffic, and analyzing the traffic we received. We found over 190 ROS systems on average being regularly exposed to the public Internet and discovered new trends in the exposure of different types of robotic vehicles, suggesting increasing concern regarding the cybersecurity of today’s ROS-based robotic vehicle systems.

View More Papers

Symphony: Path Validation at Scale

Anxiao He (Zhejiang University), Jiandong Fu (Zhejiang University), Kai Bu (Zhejiang University), Ruiqi Zhou (Zhejiang University), Chenlu Miao (Zhejiang University), Kui Ren (Zhejiang University)

Read More

Separation is Good: A Faster Order-Fairness Byzantine Consensus

Ke Mu (Southern University of Science and Technology, China), Bo Yin (Changsha University of Science and Technology, China), Alia Asheralieva (Loughborough University, UK), Xuetao Wei (Southern University of Science and Technology, China & Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, SUSTech, China)

Read More

Work-in-Progress: A Large-Scale Long-term Analysis of Online Fraud across...

Yi Han, Shujiang Wu, Mengmeng Li, Zixi Wang, and Pengfei Sun (F5)

Read More

SLMIA-SR: Speaker-Level Membership Inference Attacks against Speaker Recognition Systems

Guangke Chen (ShanghaiTech University), Yedi Zhang (National University of Singapore), Fu Song (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences)

Read More