Ryunosuke Kobayashi, Kazuki Nomoto, Yuna Tanaka, Go Tsuruoka (Waseda University), Tatsuya Mori (Waseda University/NICT/RIKEN)

—Object detection is a crucial function that detects the position and type of objects from data acquired by sensors. In autonomous driving systems, object detection is performed using data from cameras and LiDAR, and based on the results, the vehicle is controlled to follow the safest route. However, machine learning-based object detection has been reported to have vulnerabilities to adversarial samples. In this study, we propose a new attack method called “Shadow Hack” for LiDAR object detection models. While previous attack methods mainly added perturbed point clouds to LiDAR data, in this research, we introduce a method to generate “Adversarial Shadows” on the LiDAR point cloud. Specifically, the attacker strategically places materials like aluminum leisure mats to reproduce optimized positions and shapes of shadows on the LiDAR point cloud. This technique can potentially mislead LiDAR-based object detection in autonomous vehicles, leading to congestion and accidents due to actions such as braking and avoidance maneuvers. We reproduce the Shadow Hack attack method using simulations and evaluate the success rate of the attack. Furthermore, by revealing the conditions under which the attack succeeds, we aim to propose countermeasures and contribute to enhancing the robustness of autonomous driving systems.

View More Papers

Maginot Line: Assessing a New Cross-app Threat to PII-as-Factor...

Fannv He (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Yan Jia (DISSec, College of Cyber Science, Nankai University, China), Jiayu Zhao (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Yue Fang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China),…

Read More

LDR: Secure and Efficient Linux Driver Runtime for Embedded...

Huaiyu Yan (Southeast University), Zhen Ling (Southeast University), Haobo Li (Southeast University), Lan Luo (Anhui University of Technology), Xinhui Shao (Southeast University), Kai Dong (Southeast University), Ping Jiang (Southeast University), Ming Yang (Southeast University), Junzhou Luo (Southeast University, Nanjing, P.R. China), Xinwen Fu (University of Massachusetts Lowell)

Read More

Merge/Space: A Security Testbed for Satellite Systems

M. Patrick Collins (USC Information Sciences Institute), Alefiya Hussain (USC Information Sciences Institute), J.P. Walters (USC Information Sciences Institute), Calvin Ardi (USC Information Sciences Institute), Chris Tran (USC Information Sciences Institute), Stephen Schwab (USC Information Sciences Institute)

Read More

The CURE to Vulnerabilities in RPKI Validation

Donika Mirdita (Technische Universität Darmstadt), Haya Schulmann (Goethe-Universität Frankfurt), Niklas Vogel (Goethe-Universität Frankfurt), Michael Waidner (Technische Universität Darmstadt, Fraunhofer SIT)

Read More