Ryunosuke Kobayashi, Kazuki Nomoto, Yuna Tanaka, Go Tsuruoka (Waseda University), Tatsuya Mori (Waseda University/NICT/RIKEN)

—Object detection is a crucial function that detects the position and type of objects from data acquired by sensors. In autonomous driving systems, object detection is performed using data from cameras and LiDAR, and based on the results, the vehicle is controlled to follow the safest route. However, machine learning-based object detection has been reported to have vulnerabilities to adversarial samples. In this study, we propose a new attack method called “Shadow Hack” for LiDAR object detection models. While previous attack methods mainly added perturbed point clouds to LiDAR data, in this research, we introduce a method to generate “Adversarial Shadows” on the LiDAR point cloud. Specifically, the attacker strategically places materials like aluminum leisure mats to reproduce optimized positions and shapes of shadows on the LiDAR point cloud. This technique can potentially mislead LiDAR-based object detection in autonomous vehicles, leading to congestion and accidents due to actions such as braking and avoidance maneuvers. We reproduce the Shadow Hack attack method using simulations and evaluate the success rate of the attack. Furthermore, by revealing the conditions under which the attack succeeds, we aim to propose countermeasures and contribute to enhancing the robustness of autonomous driving systems.

View More Papers

Abusing the Ethereum Smart Contract Verification Services for Fun...

Pengxiang Ma (Huazhong University of Science and Technology), Ningyu He (Peking University), Yuhua Huang (Huazhong University of Science and Technology), Haoyu Wang (Huazhong University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University)

Read More

Exploring Phishing Threats through QR Codes in Naturalistic Settings

Filipo Sharevski (DePaul University), Mattia Mossano, Maxime Fabian Veit, Gunther Schiefer, Melanie Volkamer (Karlsruhe Institute of Technology)

Read More

WIP: Practical Removal Attacks on LiDAR-based Object Detection in...

Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

Read More

TEE-SHirT: Scalable Leakage-Free Cache Hierarchies for TEEs

Kerem Arikan (Binghamton University), Abraham Farrell (Binghamton University), Williams Zhang Cen (Binghamton University), Jack McMahon (Binghamton University), Barry Williams (Binghamton University), Yu David Liu (Binghamton University), Nael Abu-Ghazaleh (University of California, Riverside), Dmitry Ponomarev (Binghamton University)

Read More