Jake Jepson, Rik Chatterjee, Jeremy Daily (Colorado State University)

ETAS Best Paper Award Runner-up!

In compliance with U.S. regulations, modern commercial trucks are required by law to be equipped with Electronic Logging Devices (ELDs), which have become potential cybersecurity threat vectors. Our research uncovers three critical vulnerabilities in commonly used ELDs.

First, we demonstrate that these devices can be wirelessly controlled to send arbitrary Controller Area Network (CAN) messages, enabling unauthorized control over vehicle systems. The second vulnerability demonstrates malicious firmware can be uploaded to these ELDs, allowing attackers to manipulate data and vehicle operations arbitrarily. The final vulnerability, and perhaps the most concerning, is the potential for a selfpropagating truck-to-truck worm, which takes advantage of the inherent networked nature of these devices. Such an attack could lead to widespread disruptions in commercial fleets, with severe safety and operational implications. For the purpose of demonstration, bench level testing systems were utilized. Additional testing was conducted on a 2014 Kenworth T270 Class 6 research truck with a connected vulnerable ELD.

These findings highlight an urgent need to improve the security posture in ELD systems. Following some existing best practices and adhering to known requirements can greatly improve the security of these systems. The process of discovering the vulnerabilities and exploiting them is explained in detail. Product designers, programmers, engineers, and consumers should use this information to raise awareness of these vulnerabilities and encourage the development of safer devices that connect to vehicular networks.

View More Papers

SLMIA-SR: Speaker-Level Membership Inference Attacks against Speaker Recognition Systems

Guangke Chen (ShanghaiTech University), Yedi Zhang (National University of Singapore), Fu Song (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences)

Read More

CBAT: A Comparative Binary Analysis Tool

Chloe Fortuna (STR), JT Paasch (STR), Sam Lasser (Draper), Philip Zucker (Draper), Chris Casinghino (Jane Street), Cody Roux (AWS)

Read More

When Cryptography Needs a Hand: Practical Post-Quantum Authentication for...

Geoff Twardokus (Rochester Institute of Technology), Nina Bindel (SandboxAQ), Hanif Rahbari (Rochester Institute of Technology), Sarah McCarthy (University of Waterloo)

Read More

Differentially Private Dataset Condensation

Tianhang Zheng (University of Missouri-Kansas City), Baochun Li (University of Toronto)

Read More