Paolo Cerracchio, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

The evolution of vehicles has led to the integration of numerous devices that communicate via the controller area network (CAN) protocol. This protocol lacks security measures, leaving interconnected critical components vulnerable. The expansion of local and remote connectivity has increased the attack surface, heightening the risk of unauthorized intrusions. Since recent studies have proven external attacks to constitute a realworld threat to vehicle availability, driving data confidentiality, and passenger safety, researchers and car manufacturers focused on implementing effective defenses. intrusion detection systems (IDSs), frequently employing machine learning models, are a prominent solution. However, IDS are not foolproof, and attackers with knowledge of these systems can orchestrate adversarial attacks to evade detection. In this paper, we evaluate the effectiveness of popular adversarial techniques in the automotive domain to ascertain the resilience, characteristics, and vulnerabilities of several ML-based IDSs. We propose three gradient-based evasion algorithms and evaluate them against six detection systems. We find that the algorithms’ performance heavily depends on the model’s complexity and the intended attack’s quality. Also, we study the transferability between different detection systems and different time instants in the communication.

View More Papers

Exploring the Influence of Prompts in LLMs for Security-Related...

Weiheng Bai (University of Minnesota), Qiushi Wu (IBM Research), Kefu Wu, Kangjie Lu (University of Minnesota)

Read More

CamPro: Camera-based Anti-Facial Recognition

Wenjun Zhu (Zhejiang University), Yuan Sun (Zhejiang University), Jiani Liu (Zhejiang University), Yushi Cheng (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

MOCK: Optimizing Kernel Fuzzing Mutation with Context-aware Dependency

Jiacheng Xu (Zhejiang University), Xuhong Zhang (Zhejiang University), Shouling Ji (Zhejiang University), Yuan Tian (UCLA), Binbin Zhao (Georgia Institute of Technology), Qinying Wang (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University)

Read More

EM Eye: Characterizing Electromagnetic Side-channel Eavesdropping on Embedded Cameras

Yan Long (University of Michigan), Qinhong Jiang (Zhejiang University), Chen Yan (Zhejiang University), Tobias Alam (University of Michigan), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University), Kevin Fu (Northeastern University)

Read More