Paolo Cerracchio, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

The evolution of vehicles has led to the integration of numerous devices that communicate via the controller area network (CAN) protocol. This protocol lacks security measures, leaving interconnected critical components vulnerable. The expansion of local and remote connectivity has increased the attack surface, heightening the risk of unauthorized intrusions. Since recent studies have proven external attacks to constitute a realworld threat to vehicle availability, driving data confidentiality, and passenger safety, researchers and car manufacturers focused on implementing effective defenses. intrusion detection systems (IDSs), frequently employing machine learning models, are a prominent solution. However, IDS are not foolproof, and attackers with knowledge of these systems can orchestrate adversarial attacks to evade detection. In this paper, we evaluate the effectiveness of popular adversarial techniques in the automotive domain to ascertain the resilience, characteristics, and vulnerabilities of several ML-based IDSs. We propose three gradient-based evasion algorithms and evaluate them against six detection systems. We find that the algorithms’ performance heavily depends on the model’s complexity and the intended attack’s quality. Also, we study the transferability between different detection systems and different time instants in the communication.

View More Papers

It’s Standards’ Time to Shine: Insights for IoT Cybersecurity...

Dr. Michael J. Fagan, National Institute of Standards and Technology

Read More

WIP: AMICA: Attention-based Multi-Identifier model for asynchronous intrusion detection...

Natasha Alkhatib (Télécom Paris), Lina Achaji (INRIA), Maria Mushtaq (Télécom Paris), Hadi Ghauch (Télécom Paris), Jean-Luc Danger (Télécom Paris)

Read More

WIP: A First Look At Employing Large Multimodal Models...

Mohammed Aldeen, Pedram MohajerAnsari, Jin Ma, Mashrur Chowdhury, Long Cheng, Mert D. Pesé (Clemson University)

Read More

Decentralized Information-Flow Control for ROS2

Nishit V. Pandya (Indian Institute of Science Bangalore), Himanshu Kumar (Indian Institute of Science Bangalore), Gokulnath M. Pillai (Indian Institute of Science Bangalore), Vinod Ganapathy (Indian Institute of Science Bangalore)

Read More