Paolo Cerracchio, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

The evolution of vehicles has led to the integration of numerous devices that communicate via the controller area network (CAN) protocol. This protocol lacks security measures, leaving interconnected critical components vulnerable. The expansion of local and remote connectivity has increased the attack surface, heightening the risk of unauthorized intrusions. Since recent studies have proven external attacks to constitute a realworld threat to vehicle availability, driving data confidentiality, and passenger safety, researchers and car manufacturers focused on implementing effective defenses. intrusion detection systems (IDSs), frequently employing machine learning models, are a prominent solution. However, IDS are not foolproof, and attackers with knowledge of these systems can orchestrate adversarial attacks to evade detection. In this paper, we evaluate the effectiveness of popular adversarial techniques in the automotive domain to ascertain the resilience, characteristics, and vulnerabilities of several ML-based IDSs. We propose three gradient-based evasion algorithms and evaluate them against six detection systems. We find that the algorithms’ performance heavily depends on the model’s complexity and the intended attack’s quality. Also, we study the transferability between different detection systems and different time instants in the communication.

View More Papers

Unus pro omnibus: Multi-Client Searchable Encryption via Access Control

Jiafan Wang (Data61, CSIRO), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More

Benchmarking transferable adversarial attacks

Zhibo Jin (The University of Sydney), Jiayu Zhang (Suzhou Yierqi), Zhiyu Zhu, Huaming Chen (The University of Sydney)

Read More

VETEOS: Statically Vetting EOSIO Contracts for the “Groundhog Day”...

Levi Taiji Li (University of Utah), Ningyu He (Peking University), Haoyu Wang (Huazhong University of Science and Technology), Mu Zhang (University of Utah)

Read More

Improving In-vehicle Networks Intrusion Detection Using On-Device Transfer Learning

Sampath Rajapaksha (Robert Gordon University), Harsha Kalutarage (Robert Gordon University), M.Omar Al-Kadri (Birmingham City University), Andrei Petrovski (Robert Gordon University), Garikayi Madzudzo (Horiba Mira Ltd)

Read More