With the rapid development of the Internet of Things (IoT), new security issues have emerged that traditional vulnerability categorization may not fully cover. IoT devices rely on sensors and actuators to interact with the real world, but this interaction process between physical and digital systems has created defects that are difficult to analyze and detect. These defects include unintentional coupling effects of sensors from ambient analog signals or abnormal channels that were not intentionally designed. Various security incidents have highlighted the prevalence of such vulnerabilities in IoT systems, and their activation can result in serious consequences. Our talk highlights the need to shift the research paradigm for traditional system security to encompass sensor vulnerabilities in the intelligence era. Finally, we explore potential solutions for mitigating sensor vulnerabilities and securing IoT devices.

Speaker's Biography: Wenyuan Xu is a Professor in the College of Electrical Engineering at Zhejiang University. She received her Ph.D. in Electrical and Computer Engineering from Rutgers University in 2007. Before joining Zhejiang University in 2013, she was a tenured faculty member in the Department of Computer Science and Engineering at the University of South Carolina in the United States. Her research focuses on embedded systems security, smart systems security, and IoT security. She is an IEEE fellow and a recipient of the NSF CAREER award. She received various best-paper awards including ACM CCS 2017 and ACM AsiaCCS 2018. In addition, she is a program committee co-chair for NDSS 2022-2023 and USENIX Security 2024, and serves as an associate editor for IEEE TMC, ACM TOSN, and TPS.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 104 [1] => 68 ) ) ) [post__not_in] => Array ( [0] => 17376 ) )

Securing EV charging system against Physical-layer Signal Injection Attack...

Soyeon Son (Korea University) Kyungho Joo (Korea University) Wonsuk Choi (Korea University) Dong Hoon Lee (Korea University)

Read More

Automatic Adversarial Adaption for Stealthy Poisoning Attacks in Federated...

Torsten Krauß (University of Würzburg), Jan König (University of Würzburg), Alexandra Dmitrienko (University of Wuerzburg), Christian Kanzow (University of Würzburg)

Read More

DEMASQ: Unmasking the ChatGPT Wordsmith

Kavita Kumari (Technical University of Darmstadt, Germany), Alessandro Pegoraro (Technical University of Darmstadt), Hossein Fereidooni (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

AutoWatch: Learning Driver Behavior with Graphs for Auto Theft...

Paul Agbaje, Abraham Mookhoek, Afia Anjum, Arkajyoti Mitra (University of Texas at Arlington), Mert D. Pesé (Clemson University), Habeeb Olufowobi (University of Texas at Arlington)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)