Ahsan Saleem (University of Jyväskylä, Finland), Andrei Costin (University of Jyväskylä, Finland), Hannu Turtiainen (University of Jyväskylä, Finland), Timo Hämäläinen (University of Jyväskylä, Finland)

COSPAS-SARSAT is a satellite radio location system for aviation, maritime, and land travellers designed to aid search and rescue (SAR) services in distress. This system effectively detects, processes, and relays distress signals, facilitating prompt responses from SAR services. However, COSPAS-SARSAT 406 MHz protocols, both from an architectural and implementation point of view, exhibit fundamental cybersecurity weaknesses that make them an easy target for potential attackers. The two fundamental flaws of these protocols are the lack of digital signatures (i.e., integrity and authenticity) and encryption (i.e., confidentiality and privacy). The risks associated with these and other weaknesses have been repeatedly demonstrated by ethical cybersecurity researchers.

In this paper, we first present an overview of the insecure design of COSPAS-SARSAT messaging protocols. Subsequently, we propose a lightweight ECDSA message integrity and authenticity scheme that works seamlessly for COSPAS-SARSAT 406 MHz protocols. We propose that the scheme can be added as a backward-compatible software-only upgrade to existing systems without requiring expensive architectural redesign, upgrades, and retrofitting. The preliminary implementation, tests, and results from the lab show that our scheme is effective and efficient in adding message authenticity and integrity and represents a promising applied research direction for a low-cost, potentially backward-compatible upgrade for already deployed and operational systems.

View More Papers

WIP: An Adaptive High Frequency Removal Attack to Bypass...

Yuki Hayakawa (Keio University), Takami Sato (University of California, Irvine), Ryo Suzuki, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

ORL-AUDITOR: Dataset Auditing in Offline Deep Reinforcement Learning

Linkang Du (Zhejiang University), Min Chen (CISPA Helmholtz Center for Information Security), Mingyang Sun (Zhejiang University), Shouling Ji (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University), Zhikun Zhang (CISPA Helmholtz Center for Information Security and Stanford University)

Read More

DynPRE: Protocol Reverse Engineering via Dynamic Inference

Zhengxiong Luo (Tsinghua University), Kai Liang (Central South University), Yanyang Zhao (Tsinghua University), Feifan Wu (Tsinghua University), Junze Yu (Tsinghua University), Heyuan Shi (Central South University), Yu Jiang (Tsinghua University)

Read More

Binary Code Patching: An Ancient Art Refined for the...

Dr. Barton P. Miller (Vilas Distinguished Achievement Professor at The University of Wisconsin-Madison)

Read More