Syed Khandker (New York University Abu Dhabi), Krzysztof Jurczok (Amateur Radio Operator), Christina Pöpper (New York University Abu Dhabi)

COSPAS-Sarsat is a global satellite-based search and rescue system that provides distress alert and location information to aid in the rescue of people in distress. However, recent studies show that the system lacks proper security mechanisms, making it vulnerable to various cyberattacks, including beacon spoofing, hacking, frequency jamming, and more. This paper proposes a backward-compatible solution to address these longstanding security concerns by incorporating a message authentication code (MAC) and timestamp. The MAC and timestamp ensure the integrity and authenticity of distress signals, while backward compatibility enables seamless integration with existing beacons. The proposed solution was evaluated in both a laboratory setting and a real-world satellite environment, demonstrating its practicality and effectiveness. Experimental results indicate that our solution can effectively prevent attacks such as spoofing, man-in-the-middle, and replay attacks. This solution represents a significant step toward enhancing the security of COSPAS-Sarsat beacon communication, making it more resilient to cyberattacks, and ensuring the timely and accurate delivery of distress signals to search and rescue authorities.

View More Papers

WIP: A First Look At Employing Large Multimodal Models...

Mohammed Aldeen, Pedram MohajerAnsari, Jin Ma, Mashrur Chowdhury, Long Cheng, Mert D. Pesé (Clemson University)

Read More

Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering

Rui Zhu (Indiana University Bloominton), Di Tang (Indiana University Bloomington), Siyuan Tang (Indiana University Bloomington), Zihao Wang (Indiana University Bloomington), Guanhong Tao (Purdue University), Shiqing Ma (University of Massachusetts Amherst), XiaoFeng Wang (Indiana University Bloomington), Haixu Tang (Indiana University, Bloomington)

Read More

Invisible Reflections: Leveraging Infrared Laser Reflections to Target Traffic...

Takami Sato (University of California Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

Securing Lidar Communication through Watermark-based Tampering Detection (Long)

Michele Marazzi, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

Read More