Tobias Lüscher (ETH Zurich), Martin Strohmeier (Cyber-Defence Campus, armasuisse S+T), Vincent Lenders (Cyber-Defence Campus, armasuisse S+T)

Automatic Dependent Surveillance - Contract (ADS-C) is an satellite-based aviation datalink application used to monitor aircraft in remote regions. It is a crucial method for air traffic control to track aircraft where other protocols such as ADS-B lack connectivity. Even though it has been conceived more than 30 years ago, and other legacy communication protocols in aviation have shown to be vulnerable, ADS-C’s security has not been investigated so far in the literature. We conduct a first investigation to close this gap. First, we compile a comprehensive overview of the history, impact, and technical details of ADSC and its lower layers. Second, we build two software-defined radio receivers in order to analyze over 120’000 real-world ADSC messages. We further illustrate ADS-C’s lack of authentication by implementing an ADS-C transmitter, which is capable of generating and sending arbitrary ADS-C messages. Finally, we use the channel control offered through a software-defined ADSC receiver and transmitter as a basis for an in-depth analysis of the protocol weaknesses of the ADS-C system. The found vulnerabilities range from passively tracking aircraft to actively altering the position of actual aircraft through attacks on the downlink and the uplink. We assess the difficulty and impact of these attacks and discuss potential countermeasures.

View More Papers

Leaking the Privacy of Groups and More: Understanding Privacy...

Jiangrong Wu (Sun Yat-sen University), Yuhong Nan (Sun Yat-sen University), Luyi Xing (Indiana University Bloomington), Jiatao Cheng (Sun Yat-sen University), Zimin Lin (Alibaba Group), Zibin Zheng (Sun Yat-sen University), Min Yang (Fudan University)

Read More

Strengthening Privacy in Robust Federated Learning through Secure Aggregation

Tianyue Chu, Devriş İşler (IMDEA Networks Institute & Universidad Carlos III de Madrid), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More

A Comparative Analysis of Difficulty Between Log and Graph-Based...

Matt Jansen, Rakesh Bobba, Dave Nevin (Oregon State University)

Read More

DRAINCLoG: Detecting Rogue Accounts with Illegally-obtained NFTs using Classifiers...

Hanna Kim (KAIST), Jian Cui (Indiana University Bloomington), Eugene Jang (S2W Inc.), Chanhee Lee (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST)

Read More