Prabhjot Singh (University of Waterloo), Diogo Barradas (University of Waterloo), Tariq Elahi (University of Edinburgh), Noura Limam (University of Waterloo)

Despite the implementation of encrypted channels, such as those offered by anonymity networks like Tor, network adversaries have demonstrated the ability to compromise users’ browsing privacy through website fingerprinting attacks. This paper studies the susceptibility of Tor users to website fingerprinting when data is exchanged over low Earth orbit (LEO) satellite Internet links. Specifically, we design an experimental testbed that incorporates a Starlink satellite Internet connection, allowing us to collect a dataset for evaluating the success of website fingerprinting attacks in satellite environments compared to conventional fiber connections. Our findings suggest that Tor traffic transmitted via Starlink is as vulnerable to fingerprinting attacks as traffic over fiber links, despite the distinct networking characteristics of Starlink connections in contrast to fiber.

View More Papers

Phoenix: Surviving Unpatched Vulnerabilities via Accurate and Efficient Filtering...

Hugo Kermabon-Bobinnec (Concordia University), Yosr Jarraya (Ericsson Security Research), Lingyu Wang (Concordia University), Suryadipta Majumdar (Concordia University), Makan Pourzandi (Ericsson Security Research)

Read More

Random Spoofing Attack against Scan Matching Algorithm SLAM (Long)

Masashi Fukunaga (MitsubishiElectric), Takeshi Sugawara (The University of Electro-Communications)

Read More

Separation is Good: A Faster Order-Fairness Byzantine Consensus

Ke Mu (Southern University of Science and Technology, China), Bo Yin (Changsha University of Science and Technology, China), Alia Asheralieva (Loughborough University, UK), Xuetao Wei (Southern University of Science and Technology, China & Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, SUSTech, China)

Read More