Yun Zhang (Hunan University), Yuling Liu (Hunan University), Ge Cheng (Xiangtan University), Bo Ou (Hunan University)

In the field of computer security, binary code similarity detection is a crucial for identifying malicious software, copyright infringement, and software vulnerabilities. However, obfuscation techniques not only changes the structure and features of the code but also effectively conceal its potential malicious behaviors or infringing nature, thereby increasing the complexity of detection. Although methods based on graph neural networks have become the forefront technology for solving code similarity detection due to their effective processing and representation of code structures, they have limitations in dealing with obfuscated function matching, especially in scenarios involving control flow obfuscation. This paper proposes a method based on Graph Transformers aimed at improving the accuracy and efficiency of obfuscation-resilient binary code similarity detection. Our method utilizes Transformers to extract global information and employs three different encodings to determine the relative importance or influence of nodes in the CFG, the relative position between nodes, and the hierarchical relationships within the CFG. This method demonstrates significant adaptability to various obfuscation techniques and exhibits enhanced robustness and scalability when processing large datasets.

View More Papers

Work-in-Progress: A Large-Scale Long-term Analysis of Online Fraud across...

Yi Han, Shujiang Wu, Mengmeng Li, Zixi Wang, and Pengfei Sun (F5)

Read More

Sharing cyber threat intelligence: Does it really help?

Beomjin Jin (Sungkyunkwan University), Eunsoo Kim (Sungkyunkwan University), Hyunwoo Lee (KENTECH), Elisa Bertino (Purdue University), Doowon Kim (University of Tennessee, Knoxville), Hyoungshick Kim (Sungkyunkwan University)

Read More

WIP: Shadow Hack: Adversarial Shadow Attack Against LiDAR Object...

Ryunosuke Kobayashi, Kazuki Nomoto, Yuna Tanaka, Go Tsuruoka (Waseda University), Tatsuya Mori (Waseda University/NICT/RIKEN)

Read More

The Inconvenient Truths of Ground Truth for Binary Analysis

Jim Alves-Foss, Varsha Venugopal (University of Idaho)

Read More