Arnau Gàmez-Montolio (City, University of London; Activision Research), Enric Florit (Universitat de Barcelona), Martin Brain (City, University of London), Jacob M. Howe (City, University of London)

Polynomials over fixed-width binary numbers (bytes, Z/2 wZ, bit-vectors, etc.) appear widely in computer science including obfuscation and reverse engineering, program analysis, automated theorem proving, verification, errorcorrecting codes and cryptography. As some fixed-width binary numbers do not have reciprocals, these polynomials behave differently to those normally studied in mathematics. In particular, polynomial equality is harder to determine; polynomials having different coefficients is not sufficient to show they always compute different values. Determining polynomial equality is a fundamental building block for most symbolic algorithms. For larger widths or multivariate polynomials, checking all inputs is computationally infeasible. This paper presents a study of the mathematical structure of null polynomials (those that evaluate to 0 for all inputs) and uses this to develop efficient algorithms to reduce polynomials to a normalized form. Polynomials in such normalized form are equal if and only if their coefficients are equal. This is a key building block for more mathematically sophisticated approaches to a wide range of fundamental problems.

View More Papers

Work-in-Progress: Manifest V3 Unveiled: Navigating the New Era of...

Nikolaos Pantelaios and Alexandros Kapravelos (North Carolina State University)

Read More

Vision: “AccessFormer”: Feedback-Driven Access Control Policy

Sakuna Harinda Jayasundara, Nalin Asanka Gamagedara Arachchilage, Giovanni Russello (University of Auckland)

Read More

TEE-SHirT: Scalable Leakage-Free Cache Hierarchies for TEEs

Kerem Arikan (Binghamton University), Abraham Farrell (Binghamton University), Williams Zhang Cen (Binghamton University), Jack McMahon (Binghamton University), Barry Williams (Binghamton University), Yu David Liu (Binghamton University), Nael Abu-Ghazaleh (University of California, Riverside), Dmitry Ponomarev (Binghamton University)

Read More

Understanding the Internet-Wide Vulnerability Landscape for ROS-based Robotic Vehicles...

Wentao Chen, Sam Der, Yunpeng Luo, Fayzah Alshammari, Qi Alfred Chen (University of California, Irvine)

Read More