Arnau Gàmez-Montolio (City, University of London; Activision Research), Enric Florit (Universitat de Barcelona), Martin Brain (City, University of London), Jacob M. Howe (City, University of London)

Polynomials over fixed-width binary numbers (bytes, Z/2 wZ, bit-vectors, etc.) appear widely in computer science including obfuscation and reverse engineering, program analysis, automated theorem proving, verification, errorcorrecting codes and cryptography. As some fixed-width binary numbers do not have reciprocals, these polynomials behave differently to those normally studied in mathematics. In particular, polynomial equality is harder to determine; polynomials having different coefficients is not sufficient to show they always compute different values. Determining polynomial equality is a fundamental building block for most symbolic algorithms. For larger widths or multivariate polynomials, checking all inputs is computationally infeasible. This paper presents a study of the mathematical structure of null polynomials (those that evaluate to 0 for all inputs) and uses this to develop efficient algorithms to reduce polynomials to a normalized form. Polynomials in such normalized form are equal if and only if their coefficients are equal. This is a key building block for more mathematically sophisticated approaches to a wide range of fundamental problems.

View More Papers

UntrustIDE: Exploiting Weaknesses in VS Code Extensions

Elizabeth Lin (North Carolina State University), Igibek Koishybayev (North Carolina State University), Trevor Dunlap (North Carolina State University), William Enck (North Carolina State University), Alexandros Kapravelos (North Carolina State University)

Read More

Enhancing Symbolic Execution by Machine Learning Based Solver Selection

Sheng-Han Wen (National Taiwan University), Wei-Loon Mow (National Taiwan University), Wei-Ning Chen (National Taiwan University), Chien-Yuan Wang (National Taiwan University), Hsu-Chun Hsiao (National Taiwan University)

Read More

Cyclops: Binding a Vehicle’s Digital Identity to its Physical...

Lewis William Koplon, Ameer Ghasem Nessaee, Alex Choi (University of Arizona, Tucson), Andres Mentoza (New Mexico State University, Las Cruces), Michael Villasana, Loukas Lazos, Ming Li (University of Arizona, Tucson)

Read More

CrowdGuard: Federated Backdoor Detection in Federated Learning

Phillip Rieger (Technical University of Darmstadt), Torsten Krauß (University of Würzburg), Markus Miettinen (Technical University of Darmstadt), Alexandra Dmitrienko (University of Würzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More