The Internet has become a hostile place for users’ traffic. Network-based actors, including ISPs and governments, increasingly practice sophisticated forms of censorship, content injection, and traffic throttling, as well as surveillance and other privacy violations. My work attempts to expose these threats and develop technologies to better safeguard users. Detecting and defending against adversarial networks is challenging, especially at global scale, due to the Internet’s vast size and heterogeneity, the powerful capabilities of in-network threat actors, and the lack of ground-truth on the counterfactual traffic that would exist in the absence of interference. Overcoming these challenges requires new techniques and systems, both for collecting and interpreting evidence of hostile networks and for building defensive tools that effectively meet user needs.

In this talk, I’ll first cover my approach to monitoring Internet censorship. I introduced an entirely new family of censorship measurement techniques, based on network side-channels, that can remotely detect censorship events occurring between distant pairs of network locations. To overcome the systems and data science challenges of operating these techniques and synthesizing their results into a holistic view of online censorship, my students and I created Censored Planet, a censorship observatory that continuously tests the reachability of thousands of popular or sensitive sites from over 100,000 vantage points in 221 countries. Next, I’ll discuss our efforts to understand and defend the consumer VPN ecosystem. Although millions of end-users rely on VPNs to protect their privacy and security, this multibillion-dollar industry includes numerous snakeoil products, is laxly regulated, and remains severely understudied. To address this, my lab created VPNalyzer, a project that aims to bring transparency and better security to consumer VPNs. Our work includes a cross-platform test suite that crowd-sources VPN security testing, coupled with large-scale user studies that aim to understand the needs and threat models of VPN users.

View More Papers

DOITRUST: Dissecting On-chain Compromised Internet Domains via Graph Learning

Shuo Wang (CSIRO's Data61 & Cybersecurity CRC, Australia), Mahathir Almashor (CSIRO's Data61 & Cybersecurity CRC, Australia), Alsharif Abuadbba (CSIRO's Data61 & Cybersecurity CRC, Australia), Ruoxi Sun (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Calvin Wang (CSIRO's Data61), Raj Gaire (CSIRO's Data61 & Cybersecurity CRC, Australia), Surya Nepal (CSIRO's Data61 & Cybersecurity CRC, Australia), Seyit Camtepe (CSIRO's…

Read More

Folk Models of Misinformation on Social Media

Filipo Sharevski (DePaul University), Amy Devine (DePaul University), Emma Pieroni (DePaul University), Peter Jachim (DePaul University)

Read More

What Storage? An Empirical Analysis of Web Storage in...

Zubair Ahmad (Università Ca’ Foscari Venezia), Samuele Casarin (Università Ca’ Foscari Venezia), and Stefano Calzavara (Università Ca’ Foscari Venezia)

Read More

Kids, Cats, and Control: Designing Privacy and Security Dashboard...

Jacob Abbott (Indiana University), Jayati Dev (Indiana University), DongInn Kim (Indiana University), Shakthidhar Reddy Gopavaram (Indiana University), Meera Iyer (Indiana University), Shivani Sadam (Indiana University) , Shirang Mare (Western Washington University), Tatiana Ringenberg (Purdue University), Vafa Andalibi (Indiana University), and L. Jean Camp(Indiana University)

Read More