Frederick Rawlins, Richard Baker and Ivan Martinovic (University of Oxford)

Presenter: Frederick Rawlins

Satellites in Geostationary Orbit (GEO) provide a number of commercial, government, and military services around the world, offering everything from surveillance and monitoring to video calls and internet access. However a dramatic lowering of the cost-per-kilogram to space has led to a recent explosion in real and planned constellations in Low Earth Orbit (LEO) of smaller satellites.

These constellations are managed remotely and it is important to consider a scenario in which an attacker gains control over the constituent satellites. In this paper we aim to understand what damage this attacker could cause, using the satellites to generate interference.

To ground our analysis, we simulate a number of existing and planned LEO constellations against an example GEO constellation, and evaluate the relative effectiveness of each. Our model shows that with conservative power estimates, both current and planned constellations could disrupt GEO satellite services at every groundstation considered, albeit with effectiveness varying considerably between locations.

We analyse different patterns of interference, how they reflect the structures of the constellations creating them, and how effective they might be against a number of legitimate services. We find that real-time usage (e.g. calls, streaming) would be most affected, with 3 constellation designs able to generate thousands of outages of 30 seconds or longer over the course of the day across all groundstations.

View More Papers

Automata-Based Automated Detection of State Machine Bugs in Protocol...

Paul Fiterau-Brostean (Uppsala University, Sweden), Bengt Jonsson (Uppsala University, Sweden), Konstantinos Sagonas (Uppsala University, Sweden and National Technical University of Athens, Greece), Fredrik Tåquist (Uppsala University, Sweden)

Read More

Un-Rocking Drones: Foundations of Acoustic Injection Attacks and Recovery...

Jinseob Jeong (KAIST, Agency for Defense Development), Dongkwan Kim (Samsung SDS), Joonha Jang (KAIST), Juhwan Noh (KAIST), Changhun Song (KAIST), Yongdae Kim (KAIST)

Read More

Augmented Reality’s Potential for Identifying and Mitigating Home Privacy...

Stefany Cruz (Northwestern University), Logan Danek (Northwestern University), Shinan Liu (University of Chicago), Christopher Kraemer (Georgia Institute of Technology), Zixin Wang (Zhejiang University), Nick Feamster (University of Chicago), Danny Yuxing Huang (New York University), Yaxing Yao (University of Maryland), Josiah Hester (Georgia Institute of Technology)

Read More