Lanier Watkins, Shreya Aggarwal, Omotola Akeredolu, William H. Robinson and Aviel Rubin

Medical Body Area Networks (MBAN) are created when Wireless Sensor Nodes are either embedded into the patient’s body or strapped onto it. MBANs are used to monitor the health of patients in real-time in their homes. Many cyber protection mechanisms exist for the infrastructure that interfaces with MBANs; however, not many effective cyber security mechanisms exist for MBANs. We introduce a low-overhead security mechanism for MBANs based on having nodes infer anomalous power dissipation in their neighbors to detect compromised nodes. Nodes will infer anomalous power dissipation in their neighbors by detecting a change in their packet send rate. After two consecutive violations, the node will “Tattle” on its neighbor to the gateway, which will alert the Telemedicine administrator and notify all other nodes to ignore the compromised node.

View More Papers

Security Analysis against Spoofing Attacks for Distributed UAVs

Kyo Hyun Kim (University of Illinois at Urbana-Champaign, USA); Siddhartha Nalluri (Duke University, USA); Ashish Kashinath (University of Illinois at Urbana-Champaign, USA); Yu Wang (Duke University, USA); Sibin Mohan (University of Illinois at Urbana-Champaign, USA); Miroslav Pajic (Duke University, USA); Bo Li (University of Illinois at Urbana-Champaign, USA)

Read More

Poisoning Attacks on Federated Learning-based IoT Intrusion Detection System

Thien Duc Nguyen, Phillip Rieger, Markus Miettinen and Ahmad-Reza Sadeghi (TU Darmstadt, Germany)

Read More

Auction-based Shared Economy Resolution Markets for Blockchain Platforms

Alberto Sonnino, Michał Król, Argyrios Tasiopoulos and Ioannis Psaras

Read More

OAuth 2.0 Authorization using Blockchain-based Tokens

Nikos Fotiou, Iakovos Pittaras, Vasilios A. Siris, Spyros Voulgaris and George C. Polyzos (Athens University of Economics and Business, Greece)

Read More