Steffen Enders, Eva-Maria C. Behner, Niklas Bergmann, Mariia Rybalka, Elmar Padilla (Fraunhofer FKIE, Germany), Er Xue Hui, Henry Low, Nicholas Sim (DSO National Laboratories, Singapore)

Analyzing third-party software such as malware is a crucial task for security analysts. Although various approaches for automatic analysis exist and are the subject of ongoing research, analysts often have to resort to manual static analysis to get a deep understanding of a given binary sample. Since the source code of provided samples is rarely available, analysts regularly employ decompilers for easier and faster comprehension than analyzing a binary’s disassembly.

In this paper, we introduce our decompilation approach dewolf. We describe a variety of improvements over the previous academic state-of-the-art decompiler and some novel algorithms to enhance readability and comprehension, focusing on manual analysis. To evaluate our approach and to obtain a better insight into the analysts’ needs, we conducted three user surveys. The results indicate that dewolf is suitable for malware comprehension and that its output quality noticeably exceeds Ghidra and Hex-Rays in certain aspects. Furthermore, our results imply that decompilers aiming at manual analysis should be highly configurable to respect individual user preferences. Additionally, future decompilers should not necessarily follow the unwritten rule to stick to the code-structure dictated by the assembly in order to produce readable output. In fact, the few cases where dewolf already cracks this rule leads to its results considerably exceeding other decompilers. We publish a prototype implementation of dewolf and all survey results [1], [2].

View More Papers

FUZZILLI: Fuzzing for JavaScript JIT Compiler Vulnerabilities

Samuel Groß (Google), Simon Koch (TU Braunschweig), Lukas Bernhard (Ruhr-University Bochum), Thorsten Holz (CISPA Helmholtz Center for Information Security), Martin Johns (TU Braunschweig)

Read More

A Heuristic Approach to Detect Opaque Predicates that Disrupt...

Yu-Jye Tung (University of California, Irvine), Ian Harris (University of California Irvine)

Read More

Augmented Reality’s Potential for Identifying and Mitigating Home Privacy...

Stefany Cruz (Northwestern University), Logan Danek (Northwestern University), Shinan Liu (University of Chicago), Christopher Kraemer (Georgia Institute of Technology), Zixin Wang (Zhejiang University), Nick Feamster (University of Chicago), Danny Yuxing Huang (New York University), Yaxing Yao (University of Maryland), Josiah Hester (Georgia Institute of Technology)

Read More

Post-GDPR Threat Hunting on Android Phones: Dissecting OS-level Safeguards...

Mark Huasong Meng (National University of Singapore), Qing Zhang (ByteDance), Guangshuai Xia (ByteDance), Yuwei Zheng (ByteDance), Yanjun Zhang (The University of Queensland), Guangdong Bai (The University of Queensland), Zhi Liu (ByteDance), Sin G. Teo (Agency for Science, Technology and Research), Jin Song Dong (National University of Singapore)

Read More