Zhiyou Tian (Xidian University), Cong Sun (Xidian University), Dongrui Zeng (Palo Alto Networks), Gang Tan (Pennsylvania State University)

Dynamic taint analysis (DTA) has been widely used in security applications, including exploit detection, data provenance, fuzzing improvement, and information flow control. Meanwhile, the usability of DTA is argued on its high runtime overhead, causing a slowdown of more than one magnitude on large binaries. Various approaches have used preliminary static analysis and introduced parallelization or higher-granularity abstractions to raise the scalability of DTA. In this paper, we present a dynamic taint analysis framework podft that defines and enforces different fast paths to improve the efficiency of DBI-based dynamic taint analysis. podft uses a value-set analysis (VSA) to differentiate the instructions that must not be tainted from those potentially tainted. Combining the VSA-based analysis results with proper library function abstractions, we develop taint tracking policies for fast and slow paths and implement the tracking policy enforcement as a Pin-based taint tracker. The experimental results show that podft is more efficient than the state-of-the-art fast path-based DTA approach and competitive with the static binary rewriting approach. podft has a high potential to integrate basic block-level deep neural networks to simplify fast path enforcement and raise tracking efficiency.

View More Papers

Detection and Resolution of Control Decision Anomalies

Prof. Kang Shin (Kevin and Nancy O'Connor Professor of Computer Science, and the Founding Director of the Real-Time Computing Laboratory (RTCL) in the Electrical Engineering and Computer Science Department at the University of Michigan)

Read More

Binary Code Patching: An Ancient Art Refined for the...

Dr. Barton P. Miller (Vilas Distinguished Achievement Professor at The University of Wisconsin-Madison)

Read More

How to Count Bots in Longitudinal Datasets of IP...

Leon Böck (Technische Universität Darmstadt), Dave Levin (University of Maryland), Ramakrishna Padmanabhan (CAIDA), Christian Doerr (Hasso Plattner Institute), Max Mühlhäuser (Technical University of Darmstadt)

Read More

VICEROY: GDPR-/CCPA-compliant Enforcement of Verifiable Accountless Consumer Requests

Scott Jordan (University of California, Irvine), Yoshimichi Nakatsuka (University of California, Irvine), Ercan Ozturk (University of California, Irvine), Andrew Paverd (Microsoft Research), Gene Tsudik (University of California, Irvine)

Read More