Zhiyou Tian (Xidian University), Cong Sun (Xidian University), Dongrui Zeng (Palo Alto Networks), Gang Tan (Pennsylvania State University)

Dynamic taint analysis (DTA) has been widely used in security applications, including exploit detection, data provenance, fuzzing improvement, and information flow control. Meanwhile, the usability of DTA is argued on its high runtime overhead, causing a slowdown of more than one magnitude on large binaries. Various approaches have used preliminary static analysis and introduced parallelization or higher-granularity abstractions to raise the scalability of DTA. In this paper, we present a dynamic taint analysis framework podft that defines and enforces different fast paths to improve the efficiency of DBI-based dynamic taint analysis. podft uses a value-set analysis (VSA) to differentiate the instructions that must not be tainted from those potentially tainted. Combining the VSA-based analysis results with proper library function abstractions, we develop taint tracking policies for fast and slow paths and implement the tracking policy enforcement as a Pin-based taint tracker. The experimental results show that podft is more efficient than the state-of-the-art fast path-based DTA approach and competitive with the static binary rewriting approach. podft has a high potential to integrate basic block-level deep neural networks to simplify fast path enforcement and raise tracking efficiency.

View More Papers

Partitioning Ethereum without Eclipsing It

Hwanjo Heo (ETRI), Seungwon Woo (ETRI/KAIST), Taeung Yoon (KAIST), Min Suk Kang (KAIST), Seungwon Shin (KAIST)

Read More

Finding 1-Day Vulnerabilities in Trusted Applications using Selective Symbolic...

Marcel Busch (Friedrich-Alexander-Universität Erlangen-Nürnberg), Kalle Dirsch (Friedrich-Alexander-Universität Erlangen-Nürnberg)

Read More

Securing Federated Sensitive Topic Classification against Poisoning Attacks

Tianyue Chu (IMDEA Networks Institute), Alvaro Garcia-Recuero (IMDEA Networks Institute), Costas Iordanou (Cyprus University of Technology), Georgios Smaragdakis (TU Delft), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More

Double and Nothing: Understanding and Detecting Cryptocurrency Giveaway Scams

Xigao Li (Stony Brook University), Anurag Yepuri (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More